58 resultados para HPLC-ESI-LTQ-Orbitrap
em Université de Lausanne, Switzerland
Resumo:
A simple and sensitive LC-MS method was developed and validated for the simultaneous quantification of aripiprazole (ARI), atomoxetine (ATO), duloxetine (DUL), clozapine (CLO), olanzapine (OLA), sertindole (STN), venlafaxine (VEN) and their active metabolites dehydroaripiprazole (DARI), norclozapine (NCLO), dehydrosertindole (DSTN) and O-desmethylvenlafaxine (OVEN) in human plasma. The above mentioned compounds and the internal standard (remoxipride) were extracted from 0.5 mL plasma by solid-phase extraction (mix mode support). The analytical separation was carried out on a reverse phase liquid chromatography at basic pH (pH 8.1) in gradient mode. All analytes were monitored by MS detection in the single ion monitoring mode and the method was validated covering the corresponding therapeutic range: 2-200 ng/mL for DUL, OLA, and STN, 4-200 ng/mL for DSTN, 5-1000 ng/mL for ARI, DARI and finally 2-1000 ng/mL for ATO, CLO, NCLO, VEN, OVEN. For all investigated compounds, good performance in terms of recoveries, selectivity, stability, repeatability, intermediate precision, trueness and accuracy, was obtained. Real patient plasma samples were then successfully analysed.
Resumo:
To study the stress-induced effects caused by wounding under a new perspective, a metabolomic strategy based on HPLC-MS has been devised for the model plant Arabidopsis thaliana. To detect induced metabolites and precisely localise these compounds among the numerous constitutive metabolites, HPLC-MS analyses were performed in a two-step strategy. In a first step, rapid direct TOF-MS measurements of the crude leaf extract were performed with a ballistic gradient on a short LC-column. The HPLC-MS data were investigated by multivariate analysis as total mass spectra (TMS). Principal components analysis (PCA) and hierarchical cluster analysis (HCA) on principal coordinates were combined for data treatment. PCA and HCA demonstrated a clear clustering of plant specimens selecting the highest discriminating ions given by the complete data analysis, leading to the specific detection of discrete-induced ions (m/z values). Furthermore, pool constitution with plants of homogeneous behaviour was achieved for confirmatory analysis. In this second step, long high-resolution LC profilings on an UPLC-TOF-MS system were used on pooled samples. This allowed to precisely localise the putative biological marker induced by wounding and by specific extraction of accurate m/z values detected in the screening procedure with the TMS spectra.
Resumo:
The capabilities of a high-resolution (HR), accurate mass spectrometer (Exactive-MS) operating in full scan MS mode was investigated for the quantitative LC/MS analysis of drugs in patients' plasma samples. A mass resolution of 50,000 (FWHM) at m/z 200 and a mass extracted window of 5 ppm around the theoretical m/z of each analyte were used to construct chromatograms for quantitation. The quantitative performance of the Exactive-MS was compared with that of a triple quadrupole mass spectrometer (TQ-MS), TSQ Quantum Discovery or Quantum Ultra, operating in the conventional selected reaction monitoring (SRM) mode. The study consisted of 17 therapeutic drugs including 8 antifungal agents (anidulafungin, caspofungin, fluconazole, itraconazole, hydroxyitraconazole posaconazole, voriconazole and voriconazole-N-oxide), 4 immunosuppressants (ciclosporine, everolimus, sirolimus and tacrolimus) and 5 protein kinase inhibitors (dasatinib, imatinib, nilotinib, sorafenib and sunitinib). The quantitative results obtained with HR-MS acquisition show comparable detection specificity, assay precision, accuracy, linearity and sensitivity to SRM acquisition. Importantly, HR-MS offers several benefits over TQ-MS technology: absence of SRM optimization, time saving when changing the analysis from one MS to another, more complete information of what is in the samples and easier troubleshooting. Our work demonstrates that U/HPLC coupled to Exactive HR-MS delivers comparable results to TQ-MS in routine quantitative drug analyses. Considering the advantages of HR-MS, these results suggest that, in the near future, there should be a shift in how routine quantitative analyses of small molecules, particularly for therapeutic drugs, are performed.
Resumo:
Phthalates are suspected to be endocrine disruptors. Di(2-ethylhexyl) phthalate (DEHP) is assumed to have low dermal absorption; however, previous in vitro skin permeation studies have shown large permeation differences. Our aims were to determine DEHP permeation parameters and assess extent of skin DEHP metabolism among workers highly exposed to these lipophilic, low volatile substances. Surgically removed skin from patients undergoing abdominoplasty was immediately dermatomed (800 μm) and mounted on flow-through diffusion cells (1.77 cm(2)) operating at 32°C with cell culture media (aqueous solution) as the reservoir liquid. The cells were dosed either with neat DEHP or emulsified in aqueous solution (166 μg/ml). Samples were analysed by HPLC-MS/MS. DEHP permeated human viable skin only as the metabolite MEHP (100%) after 8h of exposure. Human skin was able to further oxidize MEHP to 5-oxo-MEHP. Neat DEHP applied to the skin hardly permeated skin while the aqueous solution readily permeated skin measured in both cases as concentration of MEHP in the receptor liquid. DEHP pass through human skin, detected as MEHP only when emulsified in aqueous solution, and to a far lesser degree when applied neat to the skin. Using results from older in vitro skin permeation studies with non-viable skin may underestimate skin exposures. Our results are in overall agreement with newer phthalate skin permeation studies.
Resumo:
The response of Arabidopsis to stress caused by mechanical wounding was chosen as a model to compare the performances of high resolution quadrupole-time-of-flight (Q-TOF) and single stage Orbitrap (Exactive Plus) mass spectrometers in untargeted metabolomics. Both instruments were coupled to ultra-high pressure liquid chromatography (UHPLC) systems set under identical conditions. The experiment was divided in two steps: the first analyses involved sixteen unwounded plants, half of which were spiked with pure standards that are not present in Arabidopsis. The second analyses compared the metabolomes of mechanically wounded plants to unwounded plants. Data from both systems were extracted using the same feature detection software and submitted to unsupervised and supervised multivariate analysis methods. Both mass spectrometers were compared in terms of number and identity of detected features, capacity to discriminate between samples, repeatability and sensitivity. Although analytical variability was lower for the UHPLC-Q-TOF, generally the results for the two detectors were quite similar, both of them proving to be highly efficient at detecting even subtle differences between plant groups. Overall, sensitivity was found to be comparable, although the Exactive Plus Orbitrap provided slightly lower detection limits for specific compounds. Finally, to evaluate the potential of the two mass spectrometers for the identification of unknown markers, mass and spectral accuracies were calculated on selected identified compounds. While both instruments showed excellent mass accuracy (<2.5ppm for all measured compounds), better spectral accuracy was recorded on the Q-TOF. Taken together, our results demonstrate that comparable performances can be obtained at acquisition frequencies compatible with UHPLC on Q-TOF and Exactive Plus MS, which may thus be equivalently used for plant metabolomics.
Resumo:
Purpose: EEG is mandatory in the diagnosis of the epilepsy syndrome. However, its potential as imaging tool is still under estimated. In the present study, we aim to determine the prerequisites of maximal benefit of electric source imaging (ESI) to localize the irritative zone in patients with focal epilepsy. Methods: One hundred fifty patients suffering from focal epilepsy and with minimum 1 year postoperative follow-up were studied prospectively and blinded to the underlying diagnosis. We evaluated the influence of two important factors on sensitivity and specificity of ESI: the number of electrodes (low resolution, LR-ESI: <30 versus high resolution, HR-ESI: 128-256 electrodes), and the use of individual MRI (i-MRI) versus template MRI (t-MRI) as the head model. Findings: ESI had a sensitivity of 85% and a specificity of 87% when HR-ESI with i-MRI was used. Using LR-ESI, sensitivity decreased to 68%, or even 57% when only t-MRI was available. The sensitivity of HR-ESI/i-MRI compared favorably with those of MRI (76%), PET (69%) and ictal/interictal SPECT (64%). Interpretation: This study on a large patient group shows excellent sensitivity and specificity of ESI if 128 EEG channels or more are used for ESI and if the results are coregistered to the patient's individual MRI. Localization precision is as high as or even higher than established brain imagery techniques. HR-ESI appears to be a valuable additional imaging tool, given that larger electrode arrays are easily and rapidly applied with modern EEG equipment and that structural MRI is nearly always available for these patients.
Resumo:
A previously developed high performance liquid chromatography mass spectrometry (HPLC-MS) procedure for the simultaneous determination of antidementia drugs, including donepezil, galantamine, memantine, rivastigmine and its metabolite NAP 226-90, was transferred to an ultra performance liquid chromatography system coupled to a tandem mass spectrometer (UPLC-MS/MS). The drugs and their internal standards ([(2)H(7)]-donepezil, [(13)C,(2)H(3)]-galantamine, [(13)C(2),(2)H(6)]-memantine, [(2)H(6)]-rivastigmine) were extracted from 250μL human plasma by protein precipitation with acetonitrile. Chromatographic separation was achieved on a reverse phase column (BEH C18 2.1mm×50mm; 1.7μm) with a gradient elution of an ammonium acetate buffer at pH 9.3 and acetonitrile at a flow rate of 0.4mL/min and an overall run time of 4.5min. The analytes were detected on a tandem quadrupole mass spectrometer operated in positive electrospray ionization mode, and quantification was performed using multiple reaction monitoring. The method was validated according to the recommendations of international guidelines over a calibration range of 1-300ng/mL for donepezil, galantamine and memantine, and 0.2-50ng/mL for rivastimgine and NAP 226-90. The trueness (86-108%), repeatability (0.8-8.3%), intermediate precision (2.3-10.9%) and selectivity of the method were found to be satisfactory. Matrix effects variability was inferior to 15% for the analytes and inferior to 5% after correction by internal standards. A method comparison was performed with patients' samples showing similar results between the HPLC-MS and UPLC-MS/MS procedures. Thus, this validated UPLC-MS/MS method allows to reduce the required amount of plasma, to use a simplified sample preparation, and to obtain a higher sensitivity and specificity with a much shortened run-time.
Resumo:
Aims: A rapid and simple HPLC-MS method was developed for the simultaneousdetermination of antidementia drugs, including donepezil, galantamine, rivastigmineand its major metabolite NAP 226 - 90, and memantine, for TherapeuticDrug Monitoring (TDM). In the elderly population treated with antidementiadrugs, the presence of several comorbidities, drug interactions resulting frompolypharmacy, and variations in drug metabolism and elimination, are possiblefactors leading to the observed high interindividual variability in plasma levels.Although evidence for the benefit of TDM for antidementia drugs still remains tobe demonstrated, an individually adapted dosage through TDM might contributeto minimize the risk of adverse reactions and to increase the probability of efficienttherapeutic response. Methods: A solid-phase extraction procedure with amixed-mode cation exchange sorbent was used to isolate the drugs from 0.5 mL ofplasma. The compounds were analyzed on a reverse-phase column with a gradientelution consisting of an ammonium acetate buffer at pH 9.3 and acetonitrile anddetected by mass spectrometry in the single ion monitoring mode. Isotope-labeledinternal standards were used for quantification where possible. The validatedmethod was used to measure the plasma levels of antidementia drugs in 300patients treated with these drugs. Results: The method was validated accordingto international standards of validation, including the assessment of the trueness(-8 - 11 %), the imprecision (repeatability: 1-5%, intermediate imprecision:2 - 9 %), selectivity and matrix effects variability (less than 6 %). Furthermore,short and long-term stability of the analytes in plasma was ascertained. Themethod proved to be robust in the calibrated ranges of 1 - 300 ng/mL for rivastigmineand memantine and 2 - 300 mg/mL for donepezil, galantamine and NAP226 - 90. We recently published a full description of the method (1). We found ahigh interindividual variability in plasma levels of these drugs in a study populationof 300 patients. The plasma level measurements, with some preliminaryclinical and pharmacogenetic results, will be presented. Conclusion: A simpleLC-MS method was developed for plasma level determination of antidementiadrugs which was successfully used in a clinical study with 300 patients.
Resumo:
Blood doping involves the use of products that enhance the uptake, transport, or delivery of oxygen to the blood. One approach uses artificial oxygen carriers, known as hemoglobin-based oxygen carriers (HBOCs). This study describes an analytical strategy based on CE for detecting intact HBOCs in plasma samples collected for doping control. On-capillary detection was performed by UV/Vis at 415 nm, which offered detection selectivity for hemoproteins (such as hemoglobin and HBOCs). On-line ESI-MS detection with a TOF analyzer was further used to provide accurate masses on CE peaks and to confirm the presence of HBOCs. An immunodepletion sample preparation step was mandatory prior to analysis, in order to remove most abundant proteins that interfered with CE separation and altered the ESI process. This analytical method was successfully applied to plasma samples enriched with Oxyglobin, a commercially available HBOC used for veterinary purposes. Detection limits of 0.20 and 0.45 g/dL were achieved in plasma for CE-UV/Vis at 415 nm and CE-ESI-TOF/MS, respectively.
Resumo:
A HPLC method is presented for the identification and quantification in plasma and urine of beta-adrenergic receptor antagonists (betaxolol, carteolol, metipranolol, and timolol) commonly prescribed in ophthalmology. An extraction method is described using pindolol as an internal standard. An RSIL 10 micron column was used. The lower detection limits of the beta-blockers were found to be 4-27 ng/ml. This method is simple, rapid and sensitive; moreover, it allows the determination of 8 other beta-blockers.
Resumo:
BACKGROUND: Direct-infusion ESI-MS/MS is a powerful approach for the identification of substances in complex mixtures. The aim of this work was to investigate its applicability to the toxicological screening of blood samples. A simple protein precipitation was used, followed by a 15 min infusion of the extract in the mass spectrometer. RESULTS: The application of the procedure to commercial quality controls and authentic post-mortem blood samples demonstrated that the direct-infusion ESI-MS/MS approach enables the simultaneous identification of substances that require different chromatographic conditions. However, poor sensitivity was observed for benzodiazepine, amphetamines and opiate compounds. CONCLUSION: Considering the facile implementation and positive performance of direct-infusion ESI-MS/MS, this approach may to be a valuable complementary technique for systematic toxicological analysis procedures.
Resumo:
CE is a powerful analytical tool used to separate intact biomolecules such as proteins. The coupling of CE with TOF/MS produces a very promising method that can be used to detect and identify proteins in different matrices. This paper describes an efficient, rapid, and simple CE-ESI-TOF/MS procedure for the analysis of endogenous human growth hormone and recombinant human growth hormone without sample preparation. Operational factors were optimized using an experimental design, and the method was successfully applied to distinguish human growth hormone and recombinant human growth hormone in unknown samples.
Resumo:
The new-generation nebulizers are commonly used for the administration of salbutamol in mechanically ventilated patients. The different modes of administration and new devices have not been compared. We developed a liquid chromatography-tandem mass spectrometry method for the determination of concentrations as low as 0.05 ng/mL of salbutamol, corresponding to the desired plasma concentration after inhalation. Salbutamol quantification was performed by reverse-phase HPLC. Analyte quantification was performed by electrospray ionization-triple quadrupole mass spectrometry using selected reaction monitoring detection ESI in the positive mode. The method was validated over concentrations ranging from 0.05 to 100 ng/mL in plasma and from 0.18 to 135 ng/mL in urine. The method is precise, with mean inter-day coefficient of variation (CV%) within 3.1-8.3% in plasma and 1.3-3.9% in urine, as well as accurate. The proposed method was found to reach the required sensitivity for the evaluation of different nebulizers as well as nebulization modes. The present assay was applied to examine whether salbutamol urine levels, normalized with the creatinine levels, correlated with the plasma concentrations. A suitable, convenient and noninvasive method of monitoring patients receiving salbutamol by mechanical ventilation could be implemented. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
A simple non-targeted differential HPLC-APCI/MS approach has been developed in order to survey metabolome modifications that occur in the leaves of Arabidopsis thaliana following wound-induced stress. The wound-induced accumulation of metabolites, particularly oxylipins, was evaluated by HPLC-MS analysis of crude leaf extracts. A generic, rapid and reproducible pressure liquid extraction procedure was developed for the analysis of restricted leaf samples without the need for specific sample preparation. The presence of various oxylipins was determined by head-to-head comparison of the HPLC-MS data, filtered with a component detection algorithm, and automatically compared with the aid of software searching for small differences in similar HPLC-MS profiles. Repeatability was verified in several specimens belonging to different series. Wound-inducible jasmonates were efficiently highlighted by this non-targeted approach without the need for complex sample preparation as is the case for the 'oxylipin signature' procedure based on GC-MS. Furthermore this HPLC-MS screening technique allowed the isolation of induced compounds for further characterisation by capillary-scale NMR (CapNMR) after HPLC scale-up. In this paper, the screening method is described and applied to illustrate its potential for monitoring polar and non-polar stress-induced constituents as well as its use in combination with CapNMR for the structural assignment of wound-induced compounds of interest