380 resultados para HLA-DRB1 antigen
em Université de Lausanne, Switzerland
Resumo:
We have reported the identification of human gene MAGE-1, which directs the expression of an antigen recognized on a melanoma by autologous cytolytic T lymphocytes (CTL). We show here that CTL directed against this antigen, which was named MZ2-E, recognize a nonapeptide encoded by the third exon of gene MAGE-1. The CTL also recognize this peptide when it is presented by mouse cells transfected with an HLA-A1 gene, confirming the association of antigen MZ2-E with the HLA-A1 molecule. Other members of the MAGE gene family do not code for the same peptide, suggesting that only MAGE-1 produces the antigen recognized by the anti-MZ2-E CTL. Our results open the possibility of immunizing HLA-A1 patients whose tumor expresses MAGE-1 either with the antigenic peptide or with autologous antigen-presenting cells pulsed with the peptide.
Resumo:
The authors developed a standardized approach for immune monitoring of antigen-specific CD8+ T cells within peripheral blood lymphocytes (PBLs) that combines direct ex vivo analysis of Melan-A/MART-1 and influenza-specific CD8+ T cells with HLA-A2/peptide multimers and interferon-gamma ELISPOT assays. Here the authors assessed the quality of results obtained with 180 PBLs from healthy donors and melanoma patients. Reproducibility of the multimer assay was good (average of 15% variation). In the absence of in vivo antigen-specific T-cell responses, physiologic fluctuations of multimer-positive T cells was low, with variation coefficients of 20% for Melan-A and 28% for influenza-specific T cells. In contrast, patients with vaccination-induced T-cell responses had significantly increased T-cell frequencies clearly exceeding physiologic fluctuations. Comparable results were obtained with ELISPOT assays. In conclusion, this approach is well suited to assess T-cell responses as biologic endpoints in clinical vaccine studies.
Resumo:
Résumé Des tentatives pour développer des traitements anti-cancéreux basés sur l'utilisation d'antigènes tumoraux ont commencé il y a plus de 10 ans. Depuis quelques années, un certain intérêt s'est portée sur une sous-population particulière des cellules du système immunitaire, les lymphocytes T CD4. Ces cellules jouent un rôle central dans les réponses immunitaires tant contre les virus que contre les cellules tumorales. Comme d'autres lymphocytes T, ces cellules sont activées de manière spécifique en reconnaissant un morceau d'antigène, appelé peptide. Ces peptides proviennent soit de protéines des cellules de l'hôte, soit des protéines étrangères (virus ou bactéries) soit de cellules transformées (cellules tumorales) et sont présentés aux lymphocytes T par des molécules du soi appelées CMH (complexe majeur d'histocompatibilité). Dans le cas des lymphocytes T CD4, ces molécules sont plus précisément des molécules du CMH de classe II (CMH II). Mis à part l'intérêt porté aux réponses médiées par les lymphocytes T cytotoxiques, un intérêt croissant pour les lymphocytes T CD4 s'est développé à cause de la place centrale qu'occupent ces cellules dans les réponses immunitaires. L'identification d'épitopes présentés par des molécules du CMH de classe II dérivés d'un grand nombre d'antigènes tumoraux, ainsi que le développement de techniques permettant de suivre les réponses immunitaires, offre des opportunités pour étudier de manière quantitative et qualitative les lymphocytes T CD4 spécifiques pour un antigène particulier chez des patients cancéreux. De plus, ces épitopes permettent d'induire des réponses médiées par les lymphocytes T CD4 et CD8 chez ces mêmes patients. Dans ce travail, notre premier but était de valider l'utilisation de multimères formés par des complexes peptide:molécules de CMH de class II (pCMH II) pour quantifier la réponse des cellules T CD4 dirigée contre l'épitope HA307-319 dérivé de la protéine hémaglutinine du virus de la grippe et présenté par HLA-DRB1*0401. En analysant des échantillons provenant de volontaires sains ayant reçus un vaccin contre la grippe, nous avons pu démontrer une expansion et une activation transitoires des lymphocytes T CD4 spécifiques pour le peptide HA307-319 après vaccination. De plus, les multimères pCMH II nous ont permis d'analyser plus en détails hétérogénéité des cellules T CD4 spécifiques pour le peptide HA307-319 présents dans le sang périphérique d'individus sains. Par la suite, notre but a été d'analyser les réponses des lymphocytes T CD4 spécifiques pour l'antigène Melan-A chez des patients atteints de mélanome métastatique. Nous avons tout d'abord démontré la présence de cellules T CD4 spécifiques pour l'épitope Melan-A51-73, présenté par HLA-DRBl*0401, qui avait déjà été préalablement décrit. Ensuite, nous avons décrit et caractérisé 2 nouveaux peptides issus de Melan-A qui sont présentés aux cellules T CD4 par différentes molécules du CMH de clans II. Des cellules spécifiques pour ces deux épitopes ont été trouvées chez 9/ 16 patients analysés. De plus, des multimères pCMH II chargés avec un des épitopes nous ont permis de détecter ex vivo des lymphocytes T CD4 spécifiques pour Melan-A dans le sang périphérique d'un patient atteint de mélanome. Mis ensemble, tous ces résultats suggèrent une potentielle utilisation des multimères pCMH II pour analyser en détail les lymphocytes T CD4 spécifiques d'antigènes définis. Cependant, le suivi ex vivo de telles cellules ne semble être possible que dans des cas bien particuliers. Néanmoins, les nouveaux épitopes issus de Melan-A et présentés par des molécules du CMH de classe II que nous avons décrits dans cette étude aideront à étudier plus en détails les lymphocytes T CD4 spécifiques pour Melan-A chez des patients atteints de mélanome, un sujet d'étude sur lequel peu de résultats sont à ce jour disponibles. Summary Attempts to develop cancer vaccines based on molecularly defined tumorassociated antigens were initiated more than 10 years ago. Apart from CTLmediated anti-tumor immunity, interests are. now focused on CD4 T cells that are central players of immune responses. The identification of MHC class-II-restricted epitopes from numerous tumor antigens together with the development of monitoring tools offers the opportunity to quantitatively and qualitatively study antigen-specific CD4 T lymphocytes in cancer patients and to induce both CTL and T helper responses in cancer patients. In this work, we first aimed at validating the use of peptide:MHC class II complex (pMHC II) multimers to quantitate the CD4 T cell response against the hemagglutinin-derived epitope HAso~-si9 from influenza virus presented by HLA-DRBl*0401. By analysing samples from healthy volunteers vaccinated with ananti-influenza vaccine, we could demonstrate a transient expansion and activation of HA-specific CD4 T cells after treatment. Moreover, pMHC II multimers helped us to study the heterogeneity of HAspecific CD4 T cells found in peripheral blood of healthy individuals. Then, we aimed to analyse Melan-A-specific CD4 T cell responses in metastatic melanoma patients. We first demonstrated the presence of CD4 T cells specific for the previously described Melan-A51_73 epitope presented by HLA-DRB 1 *0401 in peripheral blood of those patients. Second, we described and characterised 2 new Melan-A-derived peptides that are presented by different MHC II molecules to CD4 T cells. Specific cells for these epitopes were found in 9/ 16 rnelánoma patients analysed. In addition, pMHC II multimers loaded with one of the two epitopes allowed us to detect ex vivo Melan-A-specific CD4 T cells in peripheral blood of a melanoma patient. Together, these results suggest a potential use of pMHC II multimers in analysing in detail antigen-specific CD4 T cells. However, ex vivo monitoring of such cells will be possible only in particular conditions. Nevertheless, the new Melan-A-derived MHC II-restricted epitopes described here will help to study in more detail Melan-A-specific CD4 T cells in melanoma patients, a field where only scarce data are available.
Resumo:
Carcinoembryonic antigen (CEACAM5) is commonly overexpressed in human colon cancer. Several antigenic peptides recognized by cytolytic CD8+ T-cells have been identified and used in colon cancer phase-I vaccination clinical trials. The HLA-A*0201-binding CEA(694-702) peptide was recently isolated from acid eluted MHC-I associated peptides from a human colon tumor cell line. However, the immunogenicity of this peptide in humans remains unknown. We found that the peptide CEA(694-702) binds weakly to HLA-A*0201 molecules and is ineffective at inducing specific CD8+ T-cell responses in healthy donors. Immunogenic-altered peptide ligands with increased affinity for HLA-A*0201 were identified. Importantly, the elicited cytolytic T lymphocyte (CTL) lines and clones cross-reacted with the wild-type CEA(694-702) peptide. Tumor cells expressing CEA were recognized in a peptide and HLA-A*0201 restricted fashion, but high-CEA expression levels appear to be required for CTL recognition. Finally, CEA-specific T-cell precursors could be readily expanded by in vitro stimulation of peripheral blood mononuclear cell (PBMC) from colon cancer patients with altered CEA peptide. However, the CEA-specific CD8+ T-cell clones derived from cancer patients revealed low-functional avidity and impaired tumor-cell recognition. Together, using T-cells to demonstrate the processing and presentation of the peptide CEA694-702, we were able to corroborate its presentation by tumor cells. However, the low avidity of the specific CTLs generated from cancer patients as well as the high-antigen expression levels required for CTL recognition pose serious concerns for the use of CEA694-702 in cancer immunotherapy.
Resumo:
Narcolepsy is a rare sleep disorder with the strongest human leukocyte antigen (HLA) association ever reported. Since the associated HLA-DRB1*1501-DQB1*0602 haplotype is common in the general population (15-25%), it has been suggested that it is almost necessary but not sufficient for developing narcolepsy. To further define the genetic basis of narcolepsy risk, we performed a genome-wide association study (GWAS) in 562 European individuals with narcolepsy (cases) and 702 ethnically matched controls, with independent replication in 370 cases and 495 controls, all heterozygous for DRB1*1501-DQB1*0602. We found association with a protective variant near HLA-DQA2 (rs2858884; P < 3 x 10(-8)). Further analysis revealed that rs2858884 is strongly linked to DRB1*03-DQB1*02 (P < 4 x 10(-43)) and DRB1*1301-DQB1*0603 (P < 3 x 10(-7)). Cases almost never carried a trans DRB1*1301-DQB1*0603 haplotype (odds ratio = 0.02; P < 6 x 10(-14)). This unexpected protective HLA haplotype suggests a virtually causal involvement of the HLA region in narcolepsy susceptibility.
Resumo:
PURPOSE: Vaccination with full-length human tumor antigens aims at inducing or increasing antitumor immune responses, including CD8 CTL in cancer patients across the HLA barrier. We have recently reported that vaccination with a recombinant tumor-specific NY-ESO-1 (ESO) protein, administered with Montanide and CpG resulted in the induction of specific integrated antibody and CD4 T cell responses in all vaccinated patients examined, and significant CTL responses in half of them. Vaccine-induced CTL mostly recognized a single immunodominant region (ESO 81-110). The purpose of the present study was to identify genetic factor(s) distinguishing CTL responders from nonresponders. EXPERIMENTAL DESIGN: We determined the HLA class I alleles expressed by CTL responders and nonresponders using high-resolution molecular typing. Using short overlapping peptides spanning the ESO immunodominant CTL region and HLA class I/ESO peptide tetramers, we determined the epitopes recognized by the majority of vaccine-induced CTL. RESULTS: CTL induced by vaccination with ESO protein mostly recognized distinct but closely overlapping epitopes restricted by a few frequently expressed HLA-B35 and HLA-Cw3 alleles. All CTL responders expressed at least one of the identified alleles, whereas none of the nonresponders expressed them. CONCLUSIONS: Expression of HLA-B35 and HLA-Cw3 is associated with the induction of immunodominant CTL responses following vaccination with recombinant ESO protein. Because recombinant tumor-specific proteins are presently among the most promising candidate anticancer vaccines, our findings indicate that the monitoring of cancer vaccine trials should systematically include the assessment of HLA association with responsiveness.
Resumo:
We have determined high-resolution crystal structures of the complexes of HLA-A2 molecules with two modified immunodominant peptides from the melanoma tumor-associated protein Melan-A/Melanoma Ag recognized by T cells-1. The two peptides, a decamer and nonamer with overlapping sequences (ELAGIGILTV and ALGIGILTV), are modified in the second residue to increase their affinity for HLA-A2. The modified decamer is more immunogenic than the natural peptide and a candidate for peptide-based melanoma immunotherapy. The crystal structures at 1.8 and 2.15 A resolution define the differences in binding modes of the modified peptides, including different clusters of water molecules that appear to stabilize the peptide-HLA interaction. The structures suggest both how the wild-type peptides would bind and how three categories of cytotoxic T lymphocytes with differing fine specificity might recognize the two peptides.
Resumo:
Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.
Resumo:
PURPOSE: The Cancer Vaccine Consortium of the Cancer Research Institute (CVC-CRI) conducted a multicenter HLA-peptide multimer proficiency panel (MPP) with a group of 27 laboratories to assess the performance of the assay. EXPERIMENTAL DESIGN: Participants used commercially available HLA-peptide multimers and a well characterized common source of peripheral blood mononuclear cells (PBMC). The frequency of CD8+ T cells specific for two HLA-A2-restricted model antigens was measured by flow cytometry. The panel design allowed for participants to use their preferred staining reagents and locally established protocols for both cell labeling, data acquisition and analysis. RESULTS: We observed significant differences in both the performance characteristics of the assay and the reported frequencies of specific T cells across laboratories. These results emphasize the need to identify the critical variables important for the observed variability to allow for harmonization of the technique across institutions. CONCLUSIONS: Three key recommendations emerged that would likely reduce assay variability and thus move toward harmonizing of this assay. (1) Use of more than two colors for the staining (2) collect at least 100,000 CD8 T cells, and (3) use of a background control sample to appropriately set the analytical gates. We also provide more insight into the limitations of the assay and identified additional protocol steps that potentially impact the quality of data generated and therefore should serve as primary targets for systematic analysis in future panels. Finally, we propose initial guidelines for harmonizing assay performance which include the introduction of standard operating protocols to allow for adequate training of technical staff and auditing of test analysis procedures.
Resumo:
The recent identification and molecular characterization of tumor-associated antigens recognized by tumor-reactive CD8+ T lymphocytes has led to the development of antigen-specific immunotherapy of cancer. Among other approaches, clinical studies have been initiated to assess the in vivo immunogenicity of tumor antigen-derived peptides in cancer patients. In this study, we have analyzed the CD8+ T cell response of an ocular melanoma patient to a vaccine composed of four different tumor antigen-derived peptides administered simultaneously in incomplete Freund's adjuvant (IFA). Peptide NY-ESO-1(157-165) was remarkably immunogenic and induced a CD8+ T cell response detectable ex vivo at an early time point of the vaccination protocol. A CD8+ T cell response to the peptide analog Melan-A(26-35 A27L) was also detectable ex vivo at a later time point, whereas CD8+ T cells specific for peptide tyrosinase(368-376) were detected only after in vitro peptide stimulation. No detectable CD8+ T cell response to peptide gp100(457-466) was observed. Vaccine-induced CD8+ T cell responses declined rapidly after the initial response but increased again after further peptide injections. In addition, tumor antigen-specific CD8+ T cells were isolated from a vaccine injection site biopsy sample. Importantly, vaccine-induced CD8+ T cells specifically lysed tumor cells expressing the corresponding antigen. Together, these data demonstrate that simultaneous immunization with multiple tumor antigen-derived peptides can result in the elicitation of multiepitope-directed CD8+ T cell responses that are reactive against antigen-expressing tumors and able to infiltrate antigen-containing peripheral sites.
Resumo:
Cytotoxic T cells (CTL) recognize short peptides that are derived from the proteolysis of endogenous cellular proteins and presented on the cell surface as a complex with MHC class I molecules. CTL can recognize single amino acid substitutions in proteins, including those involved in malignant transformation. The mutated sequence of an oncogene may be presented on the cell surface as a peptide, and thus represents a potential target antigen for tumour therapy. The p21ras gene is mutated in a wide variety of tumours and since the transforming mutations result in amino acid substitutions at positions 12, 13 and 61 of the protein, a limited number of ras peptides could potentially be used in the treatment of a wide variety of malignancies. A common substitution is Val for Gly at position 12 of p21ras. In this study, we show that the peptide sequence from position 5 to position 14 with Val at position 12-ras p5-14 (Val-12)-has a motif which allows it to bind to HLA-A2.1. HLA-A2.1-restricted ras p5-14 (Val-12)-specific CTL were induced in mice transgenic for both HLA-A2.1 and human beta2-microglobulin after in vivo priming with the peptide. The murine CTL could recognize the ras p5-14 (Val-12) peptide when they were presented on both murine and human target cells bearing HLA-A2.1. No cross-reactivity was observed with the native peptide ras p5-14 (Gly-12), and this peptide was not immunogenic in HLA-A2.1 transgenic mice. This represents an interesting model for the study of an HLA-restricted CD8 cytotoxic T cell response to a defined tumour antigen in vivo.
Resumo:
Efficient HIV vaccines have to trigger cell-mediated immunity directed against various viral antigens. However little is known about the breadth of the response induced by vaccines carrying multiple proteins. Here, we report on the immunogenicity of a construct harbouring a fusion of the HIV-1 IIIB gag, pol and nef genes (gpn) designed for optimal safety and equimolar expression of the HIV proteins. The attenuated poxviruses, MVA and NYVAC, harbouring the gpn construct, induced potent immune responses in conventional mice characterised by stimulation of Gpn-specific IFN-gamma-producing cells and cytotoxic T cells. In HLA-A2 transgenic mice, recombinant MVA elicited cytotoxic responses against epitopes recognised in most HLA-A2+ HIV-1-infected individuals. We also found that the MVA vaccine triggered the in vitro expansion of peripheral blood cells isolated from a HIV-1-seropositive patient and with similar specificity as found in immunised HLA-A2 transgenic mice. In conclusion, the synthetic HIV polyantigen Gpn delivered by MVA is immunogenic, efficiently processed and presented by human MHC class I molecules.
Resumo:
Melanoma-associated genes (MAGEs) encode tumor-specific antigens that can be recognized by CD8+ cytotoxic T lymphocytes. To investigate the interaction of the HLA-A1-restricted MAGE-1 peptide 161-169 (EADPT-GHSY) with HLA class I molecules, photoreactive derivatives were prepared by single amino acid substitution with N beta-[iodo-4-azidosalicyloyl]-L-2,3-diaminopropionic acid. These derivatives were tested for their ability to bind to, and to photoaffinity-label, HLA-A1 on C1R.A1 cells. Only the derivatives containing the photoreactive amino acid in position 1 or 7 fulfilled both criteria. Testing the former derivative on 14 lymphoid cell lines expressing over 44 different HLA class I molecules indicated that it efficiently photoaffinity-labeled not only HLA-A1, but possibility also HLA-A29 and HLA-B44. MAGE peptide binding by HLA-A29 and HLA-B44 was confirmed by photoaffinity labeling with photoreactive MAGE-3 peptide derivatives on C1R.A29 and C1R.B44 cells, respectively. The different photoaffinity labeling systems were used to access the ability of the homologous peptides derived from MAGE-1, -2, -3, -4a, -4b, -6, and -12 to bind to HLA-A1, HLA-A29, and HLA-B44. All but the MAGE-2 and MAGE-12 nonapeptides efficiently inhibited photoaffinity labeling of HLA-A1, which is in agreement with the known HLA-A1 peptide-binding motif (acidic residue in P3 and C-terminal tyrosine). In contrast, photoaffinity labeling of HLA-A29 was efficiently inhibited by these as well as by the MAGE-3 and MAGE-6 nonapeptides. Finally, the HLA-B44 photoaffinity labeling, unlike the HLA-A1 and HLA-A29 labeling, was inhibited more efficiently by the corresponding MAGE decapeptides, which is consistent with the reported HLA-B44 peptide-binding motif (glutamic acid in P2, and C-terminal tyrosine or phenylalanine). The overlapping binding of homologous MAGE peptides by HLA-A1, A29, and B44 is based on different binding principles and may have implications for immunotherapy of MAGE-positive tumors.
Resumo:
Combining cell surface phenotyping with functional analysis, human CD8+ T cells have been divided into several subsets which are being studied extensively in diverse physiological situations, such as viral infection, cancer and ageing. In particular, so-called terminally differentiated effector cells possess a CD45RA+ CCR7- CD27- CD28- phenotype, contain perforin and, in different models, have been shown to exert direct ex vivo killing and to release interleukins upon both antigen-nonspecific and -specific stimulation. Using HLA class I multimers, we have identified a high frequency of peripheral CD8+ T cells that recognize a peptide derived from the self protein cytokeratin 18 presented by the HLA-A*0201 molecule. These cells can be detected in approximately 15% of the HLA-A2-positive healthy donors tested. A detailed analysis revealed that they must have divided extensively in vivo, have an effector cell phenotype and express various natural killer cell-associated receptors. Interestingly, however, they remained unresponsive to antigen-specific stimulation in vitro in terms of cytotoxicity and cytokine secretion. Thus, cytokeratin 18-specific cells constitute a frequently encountered, new CD8+ T lymphocyte subpopulation without classical effector status and with so far unknown function.