3 resultados para HIPERTENSIÓN - TRATAMIENTO
em Université de Lausanne, Switzerland
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.
Resumo:
This report describes a solution for a restenosis and for the fracture of a stent in the vertebral artery in a patient suffering from vertebrobasilar symptoms. Angiography demonstrates restenosis of a vertebral stent as well as its fracture and migration into the subclavian artery. This complication was managed percutaneously by passing a guide wire through the fractured stent. Pre-dilatation and kissing balloon techniques were applied in both the vertebral and subclavian arteries to modify the stent's dimensions and shape it into the form of a "ring." Postprocedural angiography demonstrated an excellent final result with the assistance of StentBoost visualization. Control angiography at six months also utilized StentBoost imaging and confirmed the patency of the bifurcation and that the stent was not displaced.