18 resultados para HIGH-GAIN
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVE: The study tests the hypothesis that a low daily fat intake may induce a negative fat balance and impair catch-up growth in stunted children between 3 and 9y of age. DESIGN: Randomized case-control study. SETTING: Three rural villages of the West Kiang District, The Gambia. SUBJECTS: Three groups of 30 stunted but not wasted children (height for age z-score < or = -2.0, weight for height z-score > or = -2.0) 3-9 y of age were selected by anthropometric survey. Groups were matched for age, sex, village, degree of stunting and season. INTERVENTION: Two groups were randomly assigned to be supplemented five days a week for one year with either a high fat (n = 29) or a high carbohydrate biscuit (n = 30) each containing approximately 1600 kJ. The third group was a non supplemented control group (n = 29). Growth, nutritional status, dietary intake, resting energy expenditure and morbidity were compared. RESULTS: Neither the high fat nor the high carbohydrate supplement had an effect on weight or height gain. The high fat supplement did slightly increase adipose tissue mass. There was no effect of supplementation on resting energy expenditure or morbidity. In addition, the annual growth rate was not associated with a morbidity score. CONCLUSIONS: Results show that neither a high fat nor a high carbohydrate supplement given during 12 months to stunted Gambian children induced catch-up growth. The authors suggest that an adverse effect of the environment on catch-up growth persists despite the nutritional interventions.
Resumo:
Both late menarcheal age and low calcium intake (Ca intake) during growth are risk factors for osteoporosis, probably by impairing peak bone mass. We investigated whether lasting gain in areal bone mineral density (aBMD) in response to increased Ca intake varies according to menarcheal age and, conversely, whether Ca intake could influence menarcheal age. In an initial study, 144 prepubertal girls were randomized in a double-blind controlled trial to receive either a Ca supplement (Ca-suppl.) of 850 mg/d or placebo from age 7.9-8.9 yr. Mean aBMD gain determined by dual energy x-ray absorptiometry at six sites (radius metaphysis, radius diaphysis, femoral neck, trochanter, femoral diaphysis, and L2-L4) was significantly (P = 0.004) greater in the Ca-suppl. than in the placebo group (27 vs. 21 mg/cm(2)). In 122 girls followed up, menarcheal age was recorded, and aBMD was determined at 16.4 yr of age. Menarcheal age was lower in the Ca-suppl. than in the placebo group (P = 0.048). Menarcheal age and Ca intake were negatively correlated (r = -0.35; P < 0.001), as were aBMD gains from age 7.9-16.4 yr and menarcheal age at all skeletal sites (range: r = -0.41 to r = -0.22; P < 0.001 to P = 0.016). The positive effect of Ca-suppl. on the mean aBMD gain from baseline remained significantly greater in girls below, but not in those above, the median of menarcheal age (13.0 yr). Early menarcheal age (12.1 +/- 0.5 yr): placebo, 286 +/- 36 mg/cm(2); Ca-suppl., 317 +/- 46 (P = 0.009); late menarcheal age (13.9 +/- 0.5 yr): placebo, 284 +/- 58; Ca-suppl., 276 +/- 50 (P > 0.05). The level of Ca intake during prepuberty may influence the timing of menarche, which, in turn, could influence long-term bone mass gain in response to Ca supplementation. Thus, both determinants of early menarcheal age and high Ca intake may positively interact on bone mineral mass accrual.
Resumo:
Mammary carcinomas developing in SV40 transgenic WAP-T mice arise in two distinct histological phenotypes: as differentiated low-grade and undifferentiated high-grade tumors. We integrated different types of information such as histological grading, analysis of aCGH-based gene copy number and gene expression profiling to provide a comprehensive molecular description of mammary tumors in WAP-T mice. Applying a novel procedure for the correlation of gene copy number with gene expression on a global scale, we observed in tumor samples a global coherence between genotype and transcription. This coherence can be interpreted as a matched transcriptional regulation inherited from the cells of tumor origin and determined by the activity of cancer driver genes. Despite common recurrent genomic aberrations, e.g. gain of chr. 15 in most WAP-T tumors, loss of chr. 19 frequently occurs only in low-grade tumors. These tumors show features of "basal-like" epithelial differentiation, particularly expression of keratin 14. The high-grade tumors are clearly separated from the low-grade tumors by strong expression of the Met gene and by coexpression of epithelial (e.g. keratin 18) and mesenchymal (e.g. vimentin) markers. In high-grade tumors, the expression of the nonmutated Met protein is associated with Met-locus amplification and Met activity. The role of Met as a cancer driver gene is supported by the contribution of active Met signaling to motility and growth of mammary tumor-derived cells. Finally, we discuss the independent origin of low- and high-grade tumors from distinct cells of tumor origin, possibly luminal progenitors, distinguished by Met gene expression and Met signaling.
Resumo:
Telmisartan is an angiotensin II receptor blocker with peroxisome proliferator-activated receptor-gamma agonistic properties. Telmisartan prevents weight gain and decreases food intake in models of obesity and in glitazone-treated rodents. This study further investigates the influence of telmisartan and pioglitazone and their association on weight gain and body composition by examining their influence on neuroendocrine mediators involved in food intake. Male C57/Black 6 mice were fed a high-fat diet, weight matched, and randomized in 4 treatment groups: vehicle, pioglitazone, telmisartan, and pioglitazone-telmisartan. Weight gain, food and water intake, body composition, plasma leptin levels, and the hypothalamic expression of neuroendocrine mediators were analyzed. Additional studies were performed with irbesartan and in angiotensin II 1(A) receptor-knockout mice. Telmisartan abolished weight and fat gain in vehicle- and pioglitazone-treated mice while decreasing food intake, the hypothalamic expression of the agouti-related protein, and plasma leptin levels. Modifications in neuropeptide Y and proopiomelanocortin were not consistent with changes in food intake. The effects on weight gain and expression of the agouti-related protein were intermediate with irbesartan. The effects of telmisartan on weight gain were even more pronounced in angiotensin II 1(A) receptor-knockout mice. This study confirms the anorexigenic effects of telmisartan in mice fed a high-fat diet and suggests for the first time a functional role of telmisartan on hypothalamic orexigenic agouti-related protein regulation. These anorexigenic properties abolish both weight gain and body composition modifications in fat-fed and glitazone-treated mice. The anorexigenic properties are independent from the angiotensin II 1(A) receptor.
Resumo:
C57BL/6J mice were fed a high-fat, carbohydrate-free diet (HFD) for 9 mo. Approximately 50% of the mice became obese and diabetic (ObD), approximately 10% lean and diabetic (LD), approximately 10% lean and nondiabetic (LnD), and approximately 30% displayed intermediate phenotype. All of the HFD mice were insulin resistant. In the fasted state, whole body glucose clearance was reduced in ObD mice, unchanged in the LD mice, and increased in the LnD mice compared with the normal-chow mice. Because fasted ObD mice were hyperinsulinemic and the lean mice slightly insulinopenic, there was no correlation between insulin levels and increased glucose utilization. In vivo, tissue glucose uptake assessed by 2-[(14)C]deoxyglucose accumulation was reduced in most muscles in the ObD mice but increased in the LnD mice compared with the values of the control mice. In the LD mice, the glucose uptake rates were reduced in extensor digitorum longus (EDL) and total hindlimb but increased in soleus, diaphragm, and heart. When assessed in vitro, glucose utilization rates in the absence and presence of insulin were similar in diaphragm, soleus, and EDL muscles isolated from all groups of mice. Thus, in genetically homogenous mice, HFD feeding lead to different metabolic adaptations. Whereas all of the mice became insulin resistant, this was associated, in obese mice, with decreased glucose clearance and hyperinsulinemia and, in lean mice, with increased glucose clearance in the presence of mild insulinopenia. Therefore, increased glucose clearance in lean mice could not be explained by increased insulin level, indicating that other in vivo mechanisms are triggered to control muscle glucose utilization. These adaptive mechanisms could participate in the protection against development of obesity.
Resumo:
Sirt3 is a mitochondrial NAD(+)-dependent deacetylase that governs mitochondrial metabolism and reactive oxygen species homeostasis. Sirt3 deficiency has been reported to accelerate the development of the metabolic syndrome. However, the role of Sirt3 in atherosclerosis remains enigmatic. We aimed to investigate whether Sirt3 deficiency affects atherosclerosis, plaque vulnerability, and metabolic homeostasis. Low-density lipoprotein receptor knockout (LDLR(-/-)) and LDLR/Sirt3 double-knockout (Sirt3(-/-)LDLR(-/-)) mice were fed a high-cholesterol diet (1.25 % w/w) for 12 weeks. Atherosclerosis was assessed en face in thoraco-abdominal aortae and in cross sections of aortic roots. Sirt3 deletion led to hepatic mitochondrial protein hyperacetylation. Unexpectedly, though plasma malondialdehyde levels were elevated in Sirt3-deficient mice, Sirt3 deletion affected neither plaque burden nor features of plaque vulnerability (i.e., fibrous cap thickness and necrotic core diameter). Likewise, plaque macrophage and T cell infiltration as well as endothelial activation remained unaltered. Electron microscopy of aortic walls revealed no difference in mitochondrial microarchitecture between both groups. Interestingly, loss of Sirt3 was associated with accelerated weight gain and an impaired capacity to cope with rapid changes in nutrient supply as assessed by indirect calorimetry. Serum lipid levels and glucose tolerance were unaffected by Sirt3 deletion in LDLR(-/-) mice. Sirt3 deficiency does not affect atherosclerosis in LDLR(-/-) mice. However, Sirt3 controls systemic levels of oxidative stress, limits expedited weight gain, and allows rapid metabolic adaptation. Thus, Sirt3 may contribute to postponing cardiovascular risk factor development.
Resumo:
SummarySimultaneous detection of aneuploidies for chromosomes 4, 6,10 and 17 by automated four color l-FISH in high hyperdiploid acute lymphoblastic leukemia: diagnostic assessment, clonal heterogeneity and chromosomal instability in adultsAnna Talamo BlandinService de Génétique Médicale, Unité de Cytogénétique du Cancer, CHUVAcute lymphoblastic leukemia (ALL) is a malignant hemopathy characterized by the accumulation of the immature lymphoid cells in the bone marrow and, most often, in the peripheral blood. ALL is a heterogeneous disease with distinct biological and prognostic entities. At diagnosis, cytogenetic and molecular findings constitute important and independent prognostic factors. High hyperdiploidy with 51-67 chromosomes (HeH), one of the largest cytogenetic subsets of ALL, in childhood particularly, is generally associated with a relatively favorable outcome. Chromosome gain is nonrandom, extracopies of some chromosome occurring more frequently than those of others. Concurrent presence of trisomy for chromosomes 4, 10 and 17 confers an especially good prognosis. The first aim of our work was to develop an automated four color interphase fluorescence in situ hybridization (l-FISH) methodology and to assess its ability to detect concurrent aneuploidies 4, 6, 10 and 17 in 10 ALL patients. Various combinations of aneuploidies were identified. All clones detected by conventional cytogenetics were also observed by l-FISH. However, in all patients, l-FISH revealed numerous additional abnormal clones, leading to a high level of clonal heterogeneity. Our second aim has been to investigate the nature and origin of this clonal heterogeneity and to test for the presence of chromosome instability (CIN) in HeH ALL at initial presentation. Ten HeH ALL and 10 non-HeH ALL patients were analysed by four colour l-FISH and numerical CIN values were determined for all four chromosomes together and for each chromosome and patient group, an original approach in ALL. CIN values in HeH ALL proved to be much higher than#iose in non-HeH ALL, suggesting that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by l-FISH. Our third aim has been to study the evolution of these cytogenetic features during the course of the disease in 10 HeH ALL patients. Clonal heterogeneity was also observed again during disease progression, particularly at relapse. Clones detected at initial presentation generally reappeared in relapse, in most cases with newly generated ones. A significant correlation between the number of abnormal clones and CIN suggested that the higher the instability, the larger the number of abnormal clones. Whereas clonal heterogeneity and its evolution most probably result from underlying chromosome instability, operating processes remain conjectural.RésuméLa leucémie lymphoblastique aiguë (LLA) est une hémopathie maligne qui résulte de l'accumulationde cellules lymphoïdes immatures dans la moelle osseuse, et, le plus souvent, dans le sangpériphérique également. La LLA est une affection hétérogène au sein de laquelle se distinguentplusieurs entités biologiques et pronostiques. Les données cytogénétiques et moléculaires font partieintégrante du diagnostic et jouent un rôle essentiel dans l'évaluation du pronostic. L'hyperdiploïdieélevée à 51-67 chromosomes (HeH), relativement fréquente, en particulier chez l'enfant, s'associe àun pronostic favorable. Le gain de chromosomes ne relève pas du hasard, certains chromosomesétant plus fréquemment impliqués que d'autres. La présence simultanée des trisomies 4, 6, et 17s'associe à un pronostic particulièrement bon. Le premier but du travail a été de développer uneméthode d'analyse automatique par hybridation in situ fluorescente interphasique (I-FISH) à 4couleurs et de tester sa capacité à identifier la présence simultanée d'aneuploïdies 4, 6, 10 et 17 dans10 cas de LLA. Différentes combinaisons d'aneuploïdies ont été identifiées. Tous les clones détectéspar cytogénétique conventionnelle l'ont été par I-FISH. Or, chez tous les patients, l'I-FISH a révélé denombreux clones anormaux additionnels générant un degré élevé d'hétérogénéité clonale. Notredeuxième but a été d'investiguer la nature et l'origine de cette hétérogénéité et de tester la présenced'instabilité chromosomique (CIN) chez les patients avec une LLA HeH en presentation initiale. DixLLA HeH et 10 LLA non-HeH ont été analysées par I-FISH et les valeurs de CIN numérique ont étédéterminées pour les 4 chromosomes ensemble et pour chaque chromosome et groupe de patients,approche originale dans la LLA. Ces valeurs étant beaucoup plus élevées dans la LLA HeH que dansla LLA non-HeH, elles favorisent l'hypothèse selon laquelle la CIN serait à l'origine de l'hétérogénéitéclonale révélée par I-FISH. Le troisième but de notre travail a été d'étudier l'évolution de cescaractéristiques cytogénétiques au cours de la maladie dans 10 cas de LLA HeH. L'hétérogénéitéclonale a été retrouvée lors de la progression de la maladie, en particulier en rechute, où les clonesanormaux détectés en présentation initiale réapparaissent, généralement accompagnés de clonesnouveaux. La corrélation existant entre nombre de clones anormaux et valeurs de CIN suggère queplus l'instabilité est élevée, plus le nombre de clones anormaux est grand. Bien que l'hétérogénéitéclonale et son évolution résultent très probablement de l'instabilité chromosomique, les processus àl'oeuvre ne sont pas entièrement élucidés.
Resumo:
Diet composition, in particular fat intake, has been suggested to be a risk factor for obesity in humans. Several mechanisms may contribute to explain the impact of fat intake on fat gain. One factor may be the low thermogenesis induced by a mixed meal rich in fat. In a group of 11 girls (10.1 +/- 0.3 yr), 6 obese (body mass index, 25.6 +/- 0.6 kg/m(2)), and 5 nonobese (body mass index, 19 +/- 1.6 kg/m(2)), we tested the hypothesis that a mixed meal rich in fat can elicit energy saving compared with an isocaloric and isoproteic meal rich in carbohydrate. The postabsorptive resting energy expenditure and the thermic effect of a meal (TEM) after a low fat (LF; 20% fat, 68% carbohydrate, and 12% protein) or an isocaloric (2500 kJ or 600 Cal) and isoproteic high fat (HF; 48% fat, 40% carbohydrate, and 12% protein) meal were measured by indirect calorimetry. Each girl repeated the test with a different, randomly assigned menu (HF or LF) 1 week after the first test. TEM, expressed as a percentage of energy intake was significantly higher after a LF meal than after a HF meal (6.5 +/- 0.7% vs. 4.3 +/- 0.4%; P < 0.01). The postprandial respiratory quotient (RQ) was significantly higher after a LF meal than after a HF meal (0.86 +/- 0.013 vs. 0.83 +/- 0.014; P < 0.001). The HF low carbohydrate meal induced a significantly lower increase in carbohydrate oxidation than the LF meal (20.3 +/- 6.2 vs. 61.3 +/- 7.8 mg/min; P < 0.001). On the contrary, fat oxidation was significantly higher after a HF meal than after a LF meal (-1.3 +/- 2.4 vs. -15.1 +/- 3.6 mg/min; P < 0.01). However, the postprandial fat storage was 8-fold higher after a HF meal than after a LF meal (17.2 +/- 1.7 vs. 1.9 +/- 1.8 g; P < 0.001). These results suggest that a high fat meal is able to induce lower thermogenesis and a higher positive fat balance than an isocaloric and isoproteic low fat meal. Therefore, diet composition per se must be taken into account among the various risk factors that induce obesity in children.
Resumo:
A body weight lower than 90% of the optional value has an unfavorable influence on the prognosis of chronic obstructive pulmonary disease (COPD). Short term studies of up to three months duration have shown improved function of respiratory muscle exercise tolerance and immunologic parameters by an increased caloric intake of 45 kcal/kg body weight. In a randomized trial of twelve months 14 of 30 patients with an average FEV1 of 0.8 l were instructed to take a high calorie diet. For simplicity a part of the calories were administered as Fresubin, a fluid nutrient formula. Although a weight gain of 7 kg (p = 0.003) was obtained the difference to the control group was statistically not significant (p = 0.08). The same was true for skin fold thickness (12.4 vs 5.7 mm), change of ventilatory parameters and the 6 minute walking distance (-33 vs -86 m). Subjective improvement was, however, impressive in all patients with dietary intervention, explainable probably by increased attention. Dietary counselling for increased intake of calories, vitamins and also calcium is thus very important in the treatment of patients with COPD.
Resumo:
CgPdr1p is a Candida glabrata Zn(2)-Cys(6) transcription factor involved in the regulation of the ABC-transporter genes CgCDR1, CgCDR2, and CgSNQ2, which are mediators of azole resistance. Single-point mutations in CgPDR1 are known to increase the expression of at least CgCDR1 and CgCDR2 and thus to contribute to azole resistance of clinical isolates. In this study, we investigated the incidence of CgPDR1 mutations in a large collection of clinical isolates and tested their relevance, not only to azole resistance in vitro and in vivo, but also to virulence. The comparison of CgPDR1 alleles from azole-susceptible and azole-resistant matched isolates enabled the identification of 57 amino acid substitutions, each positioned in distinct CgPDR1 alleles. These substitutions, which could be grouped into three different "hot spots," were gain of function (GOF) mutations since they conferred hyperactivity to CgPdr1p revealed by constitutive high expression of ABC-transporter genes. Interestingly, the major transporters involved in azole resistance (CgCDR1, CgCDR2, and CgSNQ2) were not always coordinately expressed in presence of specific CgPDR1 GOF mutations, thus suggesting that these are rather trans-acting elements (GOF in CgPDR1) than cis-acting elements (promoters) that lead to azole resistance by upregulating specific combinations of ABC-transporter genes. Moreover, C. glabrata isolates complemented with CgPDR1 hyperactive alleles were not only more virulent in mice than those with wild type alleles, but they also gained fitness in the same animal model. The presence of CgPDR1 hyperactive alleles also contributed to fluconazole treatment failure in the mouse model. In conclusion, this study shows for the first time that CgPDR1 mutations are not only responsible for in vitro/in vivo azole resistance but that they can also confer a selective advantage under host conditions.
Resumo:
Phosphorylation of transcription factors is a rapid and reversible process linking cell signaling and control of gene expression, therefore understanding how it controls the transcription factor functions is one of the challenges of functional genomics. We performed such analysis for the forkhead transcription factor FOXC2 mutated in human hereditary disease lymphedemadistichiasis and important for the development of venous and lymphatic valves and lymphatic collecting vessels. We found that FOXC2 is phosphorylated in a cell-cycle dependent manner on eight evolutionary conserved serine/threonine residues, seven of which are clustered within a 70 amino acid domain. Surprisingly, the mutation of phosphorylation sites or a complete deletion of the domain did not affect the transcriptional activity of FOXC2 in a synthetic reporter assay. However, overexpression of the wild type or phosphorylation-deficient mutant resulted in overlapping but distinct gene expression profiles suggesting that binding of FOXC2 to individual sites under physiological conditions is affected by phosphorylation. To gain a direct insight into the role of FOXC2 phosphorylation, we performed comparative genome-wide location analysis (ChIP-chip) of wild type and phosphorylation-deficient FOXC2 in primary lymphatic endothelial cells. The effect of loss of phosphorylation on FOXC2 binding to genomic sites ranged from no effect to nearly complete inhibition of binding, suggesting a mechanism for how FOXC2 transcriptional program can be differentially regulated depending on FOXC2 phosphorylation status. Based on these results, we propose an extension to the enhanceosome model, where a network of genomic context-dependent DNA-protein and protein-protein interactions not only distinguishes a functional site from a nonphysiological site, but also determines whether binding to the functional site can be regulated by phosphorylation. Moreover, our results indicate that FOXC2 may have different roles in quiescent versus proliferating lymphatic endothelial cells in vivo.
Resumo:
BACKGROUND: The SCN5A gene encodes for the α-subunit of the cardiac sodium channel NaV1.5, which is responsible for the rapid upstroke of the cardiac action potential. Mutations in this gene may lead to multiple life-threatening disorders of cardiac rhythm or are linked to structural cardiac defects. Here, we characterized a large family with a mutation in SCN5A presenting with an atrioventricular conduction disease and absence of Brugada syndrome. METHOD AND RESULTS: In a large family with a high incidence of sudden cardiac deaths, a heterozygous SCN5A mutation (p.1493delK) with an autosomal dominant inheritance has been identified. Mutation carriers were devoid of any cardiac structural changes. Typical ECG findings were an increased P-wave duration, an AV-block I° and a prolonged QRS duration with an intraventricular conduction delay and no signs for Brugada syndrome. HEK293 cells transfected with 1493delK showed strongly (5-fold) reduced Na(+) currents with altered inactivation kinetics compared to wild-type channels. Immunocytochemical staining demonstrated strongly decreased expression of SCN5A 1493delK in the sarcolemma consistent with an intracellular trafficking defect and thereby a loss-of-function. In addition, SCN5A 1493delK channels that reached cell membrane showed gain-of-function aspects (slowing of the fast inactivation, reduction in the relative fraction of channels that fast inactivate, hastening of the recovery from inactivation). CONCLUSION: In a large family, congregation of a heterozygous SCN5A gene mutation (p.1493delK) predisposes for conduction slowing without evidence for Brugada syndrome due to a predominantly trafficking defect that reduces Na(+) current and depolarization force.
Resumo:
PURPOSE: To describe the weight gain-related side-effects of psychotropic drugs and their consequences on metabolic complications (hypercholesterolemia, obesity) in a Swiss cohort of psychiatric patients. METHOD: This cross-sectional observational study was performed in an out-patient psychiatric division with patients having received for more than 3 months the following drugs: clozapine, olanzapine, quetiapine, risperidone, lithium, and/or valproate. Clinical measures and lifestyle information (smoking behaviour, physical activity) were recorded. RESULTS: 196 inclusions were completed. Weight gain (≥10% of initial weight) following drug treatment was reported in 47% of these patients. Prevalence of obesity (BMI ≥ 30), hypercholesterolemia (≥6.2 mmol/L) and low HDL-cholesterol (<1.0 mmol/L in men, <1.3 mmol/L in women) were present in 38%, 21%, and 27% of patients, respectively. A higher standardised dose, an increase of appetite following medication introduction, the type of medication (clozapine or olanzapine > quetiapine or risperidone > lithium or valproate), and the gender were shown to be significantly associated with evolution of BMI. CONCLUSION: High prevalence of obesity and hypercholesterolemia was found in an out-patient psychiatric population and confirms drug-induced weight gain complications during long-term treatment. The results support the recently published recommendations of monitoring of metabolic side-effects during treatment with atypical antipsychotics. Moreover, the weight gain predictors found in the present study could help to highlight patients with special health care management requirement.
Resumo:
BACKGROUND: Compromised growth after operation remains a significant problem in the cardiovascular field. Some benefit of absorbable suture materials has been demonstrated for arterial anastomoses. However, for the low-pressure zone, few data are available. METHODS: To assess growth in high- versus low-pressure zones we transected the abdominal aorta (high-pressure zone) as well as the inferior vena cava (low-pressure zone) in 10 young mongrel dogs using for reanastomosis 7-0 nonabsorbable versus absorbable running sutures in random order. RESULTS: All animals survived and were evaluated over 12 months including body weight (gain, 212% +/- 45% for nonabsorbable versus 218% +/- 8% for absorbable; not significant), angiography, and, after elective sacrifice, detailed studies of aorta and vena cava. Systematic complication of angiographic data at 12 months showed at the suture level an area of 13.8 mm2 for nonabsorbable versus 24.3 +/- 14.4 mm2 for absorbable sutures in the high-pressure zone as compared with 12.9 +/- 4.9 mm2 for nonabsorbable versus 25.3 +/- 15.4 mm2 for absorbable sutures in the low-pressure zone. Residual lumen, calculated as a function of the area above and below the suture, accounted for 35% +/- 10% for nonabsorbable versus 92% +/- 12% for absorbable sutures (p < 0.001) in the high-pressure zone as compared with 37% +/- 13% for nonabsorbable versus 75% +/- 15% for absorbable sutures (p < 0.003) in the low-pressure zone (high versus low, not significant). Poststenotic dilatation accounted for 199% +/- 22% for nonabsorbable versus 126% +/- 43% for absorbable sutures (p < 0.01) in the high-pressure zone. In the low-pressure zone, poststenotic dilatation remained below the inflow area, and the residual poststenotic lumen accounted for 52% +/- 14% for nonabsorbable versus 77% +/- 16% for absorbable sutures (p < 0.004). Macroscopic, light, and scanning electron microscopic studies confirmed different growth patterns in high- versus low-pressure zones. CONCLUSIONS: Aortic narrowing resulted in poststenotic dilatation and unrestricted outflow path (hourglass-type stenosis). Caval narrowing was followed by restriction of poststenotic outflow path (funnel-type stenosis). Absorbable suture material allows for superior growth in both high- and low-pressure zones.
Resumo:
Background: b-value is the parameter characterizing the intensity of the diffusion weighting during image acquisition. Data acquisition is usually performed with low b value (b~1000 s/mm2). Evidence shows that high b-values (b>2000 s/mm2) are more sensitive to the slow diffusion compartment (SDC) and maybe more sensitive in detecting white matter (WM) anomalies in schizophrenia.Methods: 12 male patients with schizophrenia (mean age 35 +/-3 years) and 16 healthy male controls matched for age were scanned with a low b-value (1000 s/mm2) and a high b-value (4000 s/mm2) protocol. Apparent diffusion coefficient (ADC) is a measure of the average diffusion distance of water molecules per time unit (mm2/s). ADC maps were generated for all individuals. 8 region of interests (frontal and parietal region bilaterally, centrum semi-ovale bilaterally and anterior and posterior corpus callosum) were manually traced blind to diagnosis.Results: ADC measures acquired with high b-value imaging were more sensitive in detecting differences between schizophrenia patients and healthy controls than low b-value imaging with a gain in significance by a factor of 20- 100 times despite the lower image Signal-to-noise ratio (SNR). Increased ADC was identified in patient's WM (p=0.00015) with major contributions from left and right centrum semi-ovale and to a lesser extent right parietal region.Conclusions: Our results may be related to the sensitivity of high b-value imaging to the SDC believed to reflect mainly the intra-axonal and myelin bound water pool. High b-value imaging might be more sensitive and specific to WM anomalies in schizophrenia than low b-value imaging