34 resultados para HIF-1alpha
em Université de Lausanne, Switzerland
Resumo:
Intermittent hypoxic exposure with exercise training is based on the assumption that brief exposure to hypoxia is sufficient to induce beneficial muscular adaptations mediated via hypoxia-inducible transcription factors (HIF). We previously demonstrated (Mounier et al. Med Sci Sports Exerc 38:1410-1417, 2006) that leukocytes respond to hypoxia with a marked inter-individual variability in HIF-1alpha mRNA. This study compared the effects of 3 weeks of intermittent hypoxic training on hif gene expression in both skeletal muscle and leukocytes. Male endurance athletes (n = 19) were divided into an Intermittent Hypoxic Exposure group (IHE) and a Normoxic Training group (NT) with each group following a similar 3-week exercise training program. After training, the amount of HIF-1alpha mRNA in muscle decreased only in IHE group (-24.7%, P < 0.05) whereas it remained unchanged in leukocytes in both groups. The levels of vEGF(121) and vEGF(165) mRNA in skeletal muscle increased significantly after training only in the NT group (+82.5%, P < 0.05 for vEGF(121); +41.2%, P < 0.05 for vEGF(165)). In leukocytes, only the IHE group showed a significant change in vEGF(165) (-28.2%, P < 0.05). The significant decrease in HIF-1alpha mRNA in skeletal muscle after hypoxic training suggests that transcriptional and post-transcriptional regulations of the hif-1alpha gene are different in muscle and leukocytes.
Resumo:
While intermittent hypoxic training (IHT) has been reported to evoke cellular responses via hypoxia inducible factors (HIFs) but without substantial performance benefits in endurance athletes, we hypothesized that repeated sprint training in hypoxia could enhance repeated sprint ability (RSA) performed in normoxia via improved glycolysis and O(2) utilization. 40 trained subjects completed 8 cycling repeated sprint sessions in hypoxia (RSH, 3000 m) or normoxia (RSN, 485 m). Before (Pre-) and after (Post-) training, muscular levels of selected mRNAs were analyzed from resting muscle biopsies and RSA tested until exhaustion (10-s sprint, work-to-rest ratio 1ratio2) with muscle perfusion assessed by near-infrared spectroscopy. From Pre- to Post-, the average power output of all sprints in RSA was increased (p<0.01) to the same extent (6% vs 7%, NS) in RSH and in RSN but the number of sprints to exhaustion was increased in RSH (9.4+/-4.8 vs. 13.0+/-6.2 sprints, p<0.01) but not in RSN (9.3+/-4.2 vs. 8.9+/-3.5). mRNA concentrations of HIF-1alpha (+55%), carbonic anhydrase III (+35%) and monocarboxylate transporter-4 (+20%) were augmented (p<0.05) whereas mitochondrial transcription factor A (-40%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (-23%) and monocarboxylate transporter-1 (-36%) were decreased (p<0.01) in RSH only. Besides, the changes in total hemoglobin variations (Delta[tHb]) during sprints throughout RSA test increased to a greater extent (p<0.01) in RSH. Our findings show larger improvement in repeated sprint performance in RSH than in RSN with significant molecular adaptations and larger blood perfusion variations in active muscles.
Resumo:
Hepatitis C virus (HCV) infection induces a state of oxidative stress by affecting mitochondrial-respiratory-chain activity. By using cell lines inducibly expressing different HCV constructs, we showed previously that viral-protein expression leads to severe impairment of mitochondrial oxidative phosphorylation and to major reliance on nonoxidative glucose metabolism. However, the bioenergetic competence of the induced cells was not compromised, indicating an efficient prosurvival adaptive response. Here, we show that HCV protein expression activates hypoxia-inducible factor 1 (HIF-1) by normoxic stabilization of its alpha subunit. In consequence, expression of HIF-controlled genes, including those coding for glycolytic enzymes, was significantly upregulated. Similar expression of HIF-controlled genes was observed in cell lines inducibly expressing subgenomic HCV constructs encoding either structural or nonstructural viral proteins. Stabilization and transcriptional activation of HIF-1alpha was confirmed in Huh-7.5 cells harboring cell culture-derived infectious HCV and in liver biopsy specimens from patients with chronic hepatitis C. The HCV-related HIF-1alpha stabilization was insensitive to antioxidant treatment. Mimicking an impairment of mitochondrial oxidative phosphorylation by treatment of inducible cell lines with oligomycin resulted in stabilization of HIF-1alpha. Similar results were obtained by treatment with pyruvate, indicating that accumulation of intermediate metabolites is sufficient to stabilize HIF-1alpha. These observations provide new insights into the pathogenesis of chronic hepatitis C and, possibly, the HCV-related development of hepatocellular carcinoma.
Resumo:
Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1alpha and PPARgamma, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1alpha activates glycolytic genes and PPARgamma, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1alpha in mice prevents hypertrophy-induced PPARgamma activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1alpha-PPARgamma axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.
Resumo:
The monocarboxylate transporter MCT4 is a high capacity carrier important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is predominantly expressed by astrocytes. Surprisingly, MCT4 expression in cultured astrocytes is low, suggesting that a physiological characteristic, not met in culture conditions, is necessary. Here we demonstrate that reducing oxygen concentration from 21% to either 1 or 0% restored in a concentration-dependent manner the expression of MCT4 at the mRNA and protein levels in cultured astrocytes. This effect was specific for MCT4 since the expression of MCT1, the other astrocytic monocarboxylate transporter present in vitro, was not altered in such conditions. MCT4 expression was shown to be controlled by the transcription factor hypoxia-inducible factor-1α (HIF-1α) since under low oxygen levels, transfecting astrocyte cultures with a siRNA targeting HIF-1α largely prevented MCT4 induction. Moreover, the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) induced MCT4 expression in astrocytes cultured in presence of 21% oxygen. In parallel, glycolytic activity was enhanced by exposure to 1% oxygen as demonstrated by the increased lactate release, an effect dependent on MCT4 expression. Finally, MCT4 expression was found to be necessary for astrocyte survival when exposed for a prolonged period to 1% oxygen. These data suggest that a major determinant of astrocyte MCT4 expression in vivo is likely the oxygen tension. This could be relevant in areas of high neuronal activity and oxygen consumption, favouring astrocytic lactate supply to neurons. Moreover, it could also play an important role for neuronal recovery after an ischemic episode.
Resumo:
Hypoxia is an essential component of tumor microenvironment. In this study, we investigated the influence of hypoxia (1% PO(2)) on CTL-mediated tumor cell lysis. We demonstrate that exposure of target tumor cells to hypoxia has an inhibitory effect on the CTL clone (Heu171)-induced autologous target cell lysis. Such inhibition correlates with hypoxia-inducible factor-1alpha (HIF-1alpha) induction but is not associated with an alteration of CTL reactivity as revealed by granzyme B polarization or morphological change. Western blot analysis indicates that although hypoxia had no effect on p53 accumulation, it induced the phosphorylation of STAT3 in tumor cells by a mechanism at least in part involving vascular endothelial growth factor secretion. We additionally show that a simultaneous nuclear translocation of HIF-1alpha and phospho-STAT3 was observed. Interestingly, gene silencing of STAT3 by small interfering RNA resulted in HIF-1alpha inhibition and a significant restoration of target cell susceptibility to CTL-induced killing under hypoxic conditions by a mechanism involving at least in part down-regulation of AKT phosphorylation. Moreover, knockdown of HIF-1alpha resulted in the restoration of target cell lysis under hypoxic conditions. This was further supported by DNA microarray analysis where STAT3 inhibition resulted in a partly reversal of the hypoxia-induced gene expression profile. The present study demonstrates that the concomitant hypoxic induction of phospho-STAT3 and HIF-1alpha are functionally linked to the alteration of non-small cell lung carcinoma target susceptibility to CTL-mediated killing. Considering the eminent functions of STAT3 and HIF-1alpha in the tumor microenvironment, their targeting may represent novel strategies for immunotherapeutic intervention.
Resumo:
Astrocytes exhibit a prominent glycolytic activity, but whether such a metabolic profile is influenced by intercellular communication is unknown. Treatment of primary cultures of mouse cortical astrocytes with the nitric oxide (NO) donor DetaNONOate induced a time-dependent enhancement in the expression of genes encoding various glycolytic enzymes as well as transporters for glucose and lactate. Such an effect was shown to be dependent on the hypoxia-inducible factor HIF-1α, which is stabilized and translocated to the nucleus to exert its transcriptional regulation. NO action was dependent on both the PI3K/Akt/mTOR and MEK signaling pathways and required the activation of COX, but was independent of the soluble guanylate cyclase pathway. Furthermore, as a consequence of NO treatment, an enhanced lactate production and release by astrocytes was evidenced, which was prevented by downregulating HIF-1α. Several brain cell types represent possible sources of NO. It was found that endothelial cells, which express the endothelial NO synthase (eNOS) isoform, constitutively produced the largest amount of NO in culture. When astrocytes were cocultured with primary cultures of brain vascular endothelial cells, stabilization of HIF-1α and an enhancement in glucose transporter-1, hexokinase-2, and monocarboxylate transporter-4 expression as well as increased lactate production was found in astrocytes. This effect was inhibited by the NOS inhibitor l-NAME and was not seen when astrocytes were cocultured with primary cultures of cortical neurons. Our findings suggest that endothelial cell-derived NO participates to the maintenance of a high glycolytic activity in astrocytes mediated by astrocytic HIF-1α activation.
Resumo:
Fructose is a major component of dietary sugar and its overconsumption exacerbates key pathological features of metabolic syndrome. The central fructose-metabolising enzyme is ketohexokinase (KHK), which exists in two isoforms: KHK-A and KHK-C, generated through mutually exclusive alternative splicing of KHK pre-mRNAs. KHK-C displays superior affinity for fructose compared with KHK-A and is produced primarily in the liver, thus restricting fructose metabolism almost exclusively to this organ. Here we show that myocardial hypoxia actuates fructose metabolism in human and mouse models of pathological cardiac hypertrophy through hypoxia-inducible factor 1α (HIF1α) activation of SF3B1 and SF3B1-mediated splice switching of KHK-A to KHK-C. Heart-specific depletion of SF3B1 or genetic ablation of Khk, but not Khk-A alone, in mice, suppresses pathological stress-induced fructose metabolism, growth and contractile dysfunction, thus defining signalling components and molecular underpinnings of a fructose metabolism regulatory system crucial for pathological growth.
Resumo:
In vitro, Toll-like receptors (TLR)2, 4 and 9 as well as NOD-like receptor 2 critically determine macrophage responses to Mycobacterium tuberculosis (Mtb) infection. However, in low-dose experimental murine tuberculosis, single or multiple deficiencies in TLRs 2, 4, 9 or NOD2 have little, if any, impact on early mycobacterial growth containment, granuloma formation and survival. Here, we analyzed the relevance of NALP3, one component of the danger-signaling inflammasome, for (i) Mtb-induced cytokine secretion in vitro and in vivo, (ii) restriction of Mtb replication in infected organs and (iii) granuloma formation. In the absence of functional NALP3, there was no IL-1beta and IL-18 production in Mtb-infected dendritic cells and macrophages in vitro, whereas secretion of IL-1alpha, IL-12p40 and TNF remained unaffected. After three weeks of infection, NALP3-deficient as well as IL-18-deficient mice were as capable as wildtype mice of restricting Mtb loads at a plateau level within well-differentiated granulomas. In conclusion, despite its involvement in cytokine processing, NALP3 is not essential for induction of protective immunity to Mtb.
Resumo:
OBJECTIVE: Atherosclerosis is a chronic inflammatory disease of major conduit arteries. Similarly, obesity and type 2 diabetes mellitus are associated with accumulation of macrophages in visceral white adipose tissue and pancreatic islets. Our goal was to characterize systemic inflammation in atherosclerosis with hypercholesterolemia, but without obesity. METHODS AND RESULTS: We compared 22-week-old apolipoprotein E knockout (ApoE(-/-)) with wild-type mice kept for 14 weeks on a high cholesterol (1.25%) diet (CD, n=8) and 8-week-old ApoE(-/-) with wild-type mice kept on a normal diet (ND, n=8). Hypercholesterolemic, atherosclerotic ApoE(-/-) mice on CD exhibited increased macrophages and T-cells in plaques and periadventitial adipose tissue that revealed elevated expression of MIP-1alpha, IL-1beta, IL-1 receptor, and IL-6. Mesenteric adipose tissue and pancreatic islets in ApoE(-/-) mice showed increased macrophages. Expression of IL-1beta was enhanced in mesenteric adipose tissue of ApoE(-/-) mice on CD. Furthermore, these mice exhibited steatohepatitis with macrophage and T-cell infiltrations as well as increased MIP-1alpha and IL-1 receptor expression. Blood glucose, insulin and total body weight did not differ between the groups. CONCLUSIONS: In hypercholesterolemic lean ApoE(-/-) mice, inflammation extends beyond atherosclerotic plaques to the periadventitial and visceral adipose tissue, liver, and pancreatic islets without affecting glucose homeostasis.
Resumo:
AIMS: A high-fructose diet (HFrD) may play a role in the obesity and metabolic disorders epidemic. In rodents, HFrD leads to insulin resistance and ectopic lipid deposition. In healthy humans, a four-week HFrD alters lipid homoeostasis, but does not affect insulin sensitivity or intramyocellular lipids (IMCL). The aim of this study was to investigate whether fructose may induce early molecular changes in skeletal muscle prior to the development of whole-body insulin resistance. METHODS: Muscle biopsies were taken from five healthy men who had participated in a previous four-week HFrD study, during which insulin sensitivity (hyperinsulinaemic euglycaemic clamp), and intrahepatocellular lipids and IMCL were assessed before and after HFrD. The mRNA concentrations of 16 genes involved in lipid and carbohydrate metabolism were quantified before and after HFrD by real-time quantitative PCR. RESULTS: HFrD significantly (P<0.05) increased stearoyl-CoA desaturase-1 (SCD-1) (+50%). Glucose transporter-4 (GLUT-4) decreased by 27% and acetyl-CoA carboxylase-2 decreased by 48%. A trend toward decreased peroxisomal proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) was observed (-26%, P=0.06). All other genes showed no significant changes. CONCLUSION: HFrD led to alterations of SCD-1, GLUT-4 and PGC-1alpha, which may be early markers of insulin resistance.
Resumo:
Introduction: Apoptosis plays a central role in chronic hepatitis C virus (HCV) infection. Although the activation of cell death signals has been reported, HCV infection persists in most patients suggesting a pro-survival adaptation, eventually developing hepatocellular carcinoma. This study focused on the role of mitochondria in the activation of pro- and antiapoptotic response in cells expressing HCV proteins. Materials and Methods: Human Osteosarcoma U2-OS cells inducibly expressing the HCV polyprotein; huh7.5 hepatoma cells transfected with full length HCV genome. Results: Long term induction of viral proteins in U2-OS cells induced a cyclosporine A-sensitive cytochrome c partial release from mitochondria, revealed by immunofluorescence, western blot and spectral analysis. In HCV-transfected Huh7.5 cells, release of the apoptosis inducing factor (AIF) with no apparent nuclear translocation was also observed. HCV positive cells displayed an HIF-dependent enhanced glycolysis, charachterized by up-regulation of the mitochondria-bound Hexokinase II (HKII); preliminary data on signal transduction pathway revealed the iperphosphorylation of Glycogen synthase kinase 3b(GSK3b). Conclusion: HCV causes a cell stress activating an early apoptotic response, the entity of which likely depends on the cell type. Nevertheless a wide series of cell survival mechanisms are also triggered resulting in a metabolic adaptation possibly favouring carcinogenesis. Based on our results, we propose a pro-survival mechanism linking HCV infection to inhibition of GSK-3b, stabilization of HIF1a and up-regulation of HKII, the last events causing a glycolytic shift and protecting from apoptosis.
Resumo:
Fas ligand (FasL) exerts potent proapoptotic and proinflammatory actions on epidermal keratinocytes and has been implicated in the pathogenesis of eczema, toxic epidermal necrolysis, and drug-induced skin eruptions. We used reconstructed human epidermis to investigate the mechanisms of FasL-induced inflammatory responses and their relationships with FasL-triggered caspase activity. Caspase activity was a potent antagonist of the pro-inflammatory gene expression triggered by FasL prior to the onset of cell death. Furthermore, we found that FasL-stimulated autocrine production of epidermal growth factor receptor (EGFR) ligands, and the subsequent activation of EGFR and ERK1 and ERK2 mitogen-activated protein kinases, were obligatory extracellular steps for the FasL-induced expression of a subset of inflammatory mediators, including CXCL8/interleukin (IL)-8, ICAM-1, IL-1alpha, IL-1beta, CCL20/MIP-3alpha, and thymic stromal lymphopoietin. These results expand the known physiological role of EGFR and its ligands from promoting keratinocyte mitogenesis and survival to mediating FasL-induced epidermal inflammation.
Resumo:
BACKGROUND:: Mechanical forces play an important role in tissue neovascularization and are a constituent part of modern wound therapies. The mechanisms by which vacuum assisted closure (VAC) modulates wound angiogenesis are still largely unknown. OBJECTIVE:: To investigate how VAC treatment affects wound hypoxia and related profiles of angiogenic factors as well as to identify the anatomical characteristics of the resultant, newly formed vessels. METHODS:: Wound neovascularization was evaluated by morphometric analysis of CD31-stained wound cross-sections as well as by corrosion casting analysis. Wound hypoxia and mRNA expression of HIF-1α and associated angiogenic factors were evaluated by pimonidazole hydrochloride staining and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Vascular endothelial growth factor (VEGF) protein levels were determined by western blot analysis. RESULTS:: VAC-treated wounds were characterized by the formation of elongated vessels aligned in parallel and consistent with physiologically function, compared to occlusive dressing control wounds that showed formation of tortuous, disoriented vessels. Moreover, VAC-treated wounds displayed a well-oxygenated wound bed, with hypoxia limited to the direct proximity of the VAC-foam interface, where higher VEGF levels were found. By contrast, occlusive dressing control wounds showed generalized hypoxia, with associated accumulation of HIF-1α and related angiogenic factors. CONCLUSIONS:: The combination of established gradients of hypoxia and VEGF expression along with mechanical forces exerted by VAC therapy was associated with the formation of more physiological blood vessels compared to occlusive dressing control wounds. These morphological changes are likely a necessary condition for better wound healing.
Resumo:
Background: There is increasing experimental evidence that hypoxia induces inflammation in the gastrointestinal tract. Hypoxia-inducible transcription factor (HIF)-1α influences adaptive immunity and has been shown to induce barrier-protective genes in the case of experimentally-induced colitis. The clinical impact of hypoxia in patients with inflammatory bowel disease (IBD) is so far poorly investigated. Aim: We wanted to evaluate if flights and journeys to regions ≥2000 meter above sea level are associated with the occurrence of flares in IBD patients in the following 4 weeks. Methods: A questionnaire was completed by inpatients and outpatients of the IBD clinics of three tertiary referral centers presenting with an IBD flare in the period from Sept 1st 2009 to August 31st 2010. Patients were inquired about their habits in the 4 weeks prior to the flare. Patients with flares were matched with an IBD group in remission during the observation period (according to age, gender, smoking habits, and medication). Results: A total of 103 IBD patients were included (43 Crohn's disease (CD), whereof 65% female, 60 ulcerative colitis, whereof 47% female, mean age 39.3±14.6 years for CD and 43.1±14.2 years for UC). Fifty-two patients with flares were matched to 51 patients without flare. Overall, IBD-patients with flares had significantly more frequently a flight and/or journey to regions ≥ 2000 meters above sea level in the observation period compared to the patients in remission (21/52 (40.4%) vs. 8/51 (15.7%), p=0.005). There was a statistically significant correlation between the occurrence of a flare and a flight and/or journey to regions ≥ 2000 meters above sea level among CD patients with flares as compared to CD patients in remission (8/21 (38.1%) vs. 2/22 (9.1%), p=0.024). A trend for more frequent flights and high-altitude journeys was observed in UC patients with flares (13/31 (41.9%) vs. 6/29 (20.7%), p=0.077). Mean flight duration was 5.8±4.3 hours. The groups were controlled for the following factors (always flare group cited first): age (39.6±13.4 vs. 43.5±14.6, p=0.102), smoking (16/52 vs. 10/51, p=0.120), regular sports activities (32/ 52 vs. 33/51, p=0.739), treatment with antibiotics in the 4 weeks before flare (8/52 vs. 7/ 51, p=0.811), NSAID intake (12/52 vs. 7/51, p=0.221), frequency of chronic obstructive pulmonary disease (both groups 0) and oxygen therapy (both groups 0). Conclusion: IBD patients with a flare had significantly more frequent flights and/or high-altitude journeys within four weeks prior to the IBD flare compared to the group that was in remission. We conclude that flights and stays in high altitude are a risk factor for IBD flares.