30 resultados para H-Infinity Time-Varying Adaptive Algorithm
em Université de Lausanne, Switzerland
Resumo:
Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.
Resumo:
Neuronal oscillations are an important aspect of EEG recordings. These oscillations are supposed to be involved in several cognitive mechanisms. For instance, oscillatory activity is considered a key component for the top-down control of perception. However, measuring this activity and its influence requires precise extraction of frequency components. This processing is not straightforward. Particularly, difficulties with extracting oscillations arise due to their time-varying characteristics. Moreover, when phase information is needed, it is of the utmost importance to extract narrow-band signals. This paper presents a novel method using adaptive filters for tracking and extracting these time-varying oscillations. This scheme is designed to maximize the oscillatory behavior at the output of the adaptive filter. It is then capable of tracking an oscillation and describing its temporal evolution even during low amplitude time segments. Moreover, this method can be extended in order to track several oscillations simultaneously and to use multiple signals. These two extensions are particularly relevant in the framework of EEG data processing, where oscillations are active at the same time in different frequency bands and signals are recorded with multiple sensors. The presented tracking scheme is first tested with synthetic signals in order to highlight its capabilities. Then it is applied to data recorded during a visual shape discrimination experiment for assessing its usefulness during EEG processing and in detecting functionally relevant changes. This method is an interesting additional processing step for providing alternative information compared to classical time-frequency analyses and for improving the detection and analysis of cross-frequency couplings.
Resumo:
One signature of adaptive radiation is a high level of trait change early during the diversification process and a plateau toward the end of the radiation. Although the study of the tempo of evolution has historically been the domain of paleontologists, recently developed phylogenetic tools allow for the rigorous examination of trait evolution in a tremendous diversity of organisms. Enemy-driven adaptive radiation was a key prediction of Ehrlich and Raven's coevolutionary hypothesis [Ehrlich PR, Raven PH (1964) Evolution 18:586-608], yet has remained largely untested. Here we examine patterns of trait evolution in 51 North American milkweed species (Asclepias), using maximum likelihood methods. We study 7 traits of the milkweeds, ranging from seed size and foliar physiological traits to defense traits (cardenolides, latex, and trichomes) previously shown to impact herbivores, including the monarch butterfly. We compare the fit of simple random-walk models of trait evolution to models that incorporate stabilizing selection (Ornstein-Ulenbeck process), as well as time-varying rates of trait evolution. Early bursts of trait evolution were implicated for 2 traits, while stabilizing selection was implicated for several others. We further modeled the relationship between trait change and species diversification while allowing rates of trait evolution to vary during the radiation. Species-rich lineages underwent a proportionately greater decline in latex and cardenolides relative to species-poor lineages, and the rate of trait change was most rapid early in the radiation. An interpretation of this result is that reduced investment in defensive traits accelerated diversification, and disproportionately so, early in the adaptive radiation of milkweeds.
Resumo:
PECUBE is a three-dimensional thermal-kinematic code capable of solving the heat production-diffusion-advection equation under a temporally varying surface boundary condition. It was initially developed to assess the effects of time-varying surface topography (relief) on low-temperature thermochronological datasets. Thermochronometric ages are predicted by tracking the time-temperature histories of rock-particles ending up at the surface and by combining these with various age-prediction models. In the decade since its inception, the PECUBE code has been under continuous development as its use became wider and addressed different tectonic-geomorphic problems. This paper describes several major recent improvements in the code, including its integration with an inverse-modeling package based on the Neighborhood Algorithm, the incorporation of fault-controlled kinematics, several different ways to address topographic and drainage change through time, the ability to predict subsurface (tunnel or borehole) data, prediction of detrital thermochronology data and a method to compare these with observations, and the coupling with landscape-evolution (or surface-process) models. Each new development is described together with one or several applications, so that the reader and potential user can clearly assess and make use of the capabilities of PECUBE. We end with describing some developments that are currently underway or should take place in the foreseeable future. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Les instabilités engendrées par des gradients de densité interviennent dans une variété d'écoulements. Un exemple est celui de la séquestration géologique du dioxyde de carbone en milieux poreux. Ce gaz est injecté à haute pression dans des aquifères salines et profondes. La différence de densité entre la saumure saturée en CO2 dissous et la saumure environnante induit des courants favorables qui le transportent vers les couches géologiques profondes. Les gradients de densité peuvent aussi être la cause du transport indésirable de matières toxiques, ce qui peut éventuellement conduire à la pollution des sols et des eaux. La gamme d'échelles intervenant dans ce type de phénomènes est très large. Elle s'étend de l'échelle poreuse où les phénomènes de croissance des instabilités s'opèrent, jusqu'à l'échelle des aquifères à laquelle interviennent les phénomènes à temps long. Une reproduction fiable de la physique par la simulation numérique demeure donc un défi en raison du caractère multi-échelles aussi bien au niveau spatial et temporel de ces phénomènes. Il requiert donc le développement d'algorithmes performants et l'utilisation d'outils de calculs modernes. En conjugaison avec les méthodes de résolution itératives, les méthodes multi-échelles permettent de résoudre les grands systèmes d'équations algébriques de manière efficace. Ces méthodes ont été introduites comme méthodes d'upscaling et de downscaling pour la simulation d'écoulements en milieux poreux afin de traiter de fortes hétérogénéités du champ de perméabilité. Le principe repose sur l'utilisation parallèle de deux maillages, le premier est choisi en fonction de la résolution du champ de perméabilité (grille fine), alors que le second (grille grossière) est utilisé pour approximer le problème fin à moindre coût. La qualité de la solution multi-échelles peut être améliorée de manière itérative pour empêcher des erreurs trop importantes si le champ de perméabilité est complexe. Les méthodes adaptatives qui restreignent les procédures de mise à jour aux régions à forts gradients permettent de limiter les coûts de calculs additionnels. Dans le cas d'instabilités induites par des gradients de densité, l'échelle des phénomènes varie au cours du temps. En conséquence, des méthodes multi-échelles adaptatives sont requises pour tenir compte de cette dynamique. L'objectif de cette thèse est de développer des algorithmes multi-échelles adaptatifs et efficaces pour la simulation des instabilités induites par des gradients de densité. Pour cela, nous nous basons sur la méthode des volumes finis multi-échelles (MsFV) qui offre l'avantage de résoudre les phénomènes de transport tout en conservant la masse de manière exacte. Dans la première partie, nous pouvons démontrer que les approximations de la méthode MsFV engendrent des phénomènes de digitation non-physiques dont la suppression requiert des opérations de correction itératives. Les coûts de calculs additionnels de ces opérations peuvent toutefois être compensés par des méthodes adaptatives. Nous proposons aussi l'utilisation de la méthode MsFV comme méthode de downscaling: la grille grossière étant utilisée dans les zones où l'écoulement est relativement homogène alors que la grille plus fine est utilisée pour résoudre les forts gradients. Dans la seconde partie, la méthode multi-échelle est étendue à un nombre arbitraire de niveaux. Nous prouvons que la méthode généralisée est performante pour la résolution de grands systèmes d'équations algébriques. Dans la dernière partie, nous focalisons notre étude sur les échelles qui déterminent l'évolution des instabilités engendrées par des gradients de densité. L'identification de la structure locale ainsi que globale de l'écoulement permet de procéder à un upscaling des instabilités à temps long alors que les structures à petite échelle sont conservées lors du déclenchement de l'instabilité. Les résultats présentés dans ce travail permettent d'étendre les connaissances des méthodes MsFV et offrent des formulations multi-échelles efficaces pour la simulation des instabilités engendrées par des gradients de densité. - Density-driven instabilities in porous media are of interest for a wide range of applications, for instance, for geological sequestration of CO2, during which CO2 is injected at high pressure into deep saline aquifers. Due to the density difference between the C02-saturated brine and the surrounding brine, a downward migration of CO2 into deeper regions, where the risk of leakage is reduced, takes place. Similarly, undesired spontaneous mobilization of potentially hazardous substances that might endanger groundwater quality can be triggered by density differences. Over the last years, these effects have been investigated with the help of numerical groundwater models. Major challenges in simulating density-driven instabilities arise from the different scales of interest involved, i.e., the scale at which instabilities are triggered and the aquifer scale over which long-term processes take place. An accurate numerical reproduction is possible, only if the finest scale is captured. For large aquifers, this leads to problems with a large number of unknowns. Advanced numerical methods are required to efficiently solve these problems with today's available computational resources. Beside efficient iterative solvers, multiscale methods are available to solve large numerical systems. Originally, multiscale methods have been developed as upscaling-downscaling techniques to resolve strong permeability contrasts. In this case, two static grids are used: one is chosen with respect to the resolution of the permeability field (fine grid); the other (coarse grid) is used to approximate the fine-scale problem at low computational costs. The quality of the multiscale solution can be iteratively improved to avoid large errors in case of complex permeability structures. Adaptive formulations, which restrict the iterative update to domains with large gradients, enable limiting the additional computational costs of the iterations. In case of density-driven instabilities, additional spatial scales appear which change with time. Flexible adaptive methods are required to account for these emerging dynamic scales. The objective of this work is to develop an adaptive multiscale formulation for the efficient and accurate simulation of density-driven instabilities. We consider the Multiscale Finite-Volume (MsFV) method, which is well suited for simulations including the solution of transport problems as it guarantees a conservative velocity field. In the first part of this thesis, we investigate the applicability of the standard MsFV method to density- driven flow problems. We demonstrate that approximations in MsFV may trigger unphysical fingers and iterative corrections are necessary. Adaptive formulations (e.g., limiting a refined solution to domains with large concentration gradients where fingers form) can be used to balance the extra costs. We also propose to use the MsFV method as downscaling technique: the coarse discretization is used in areas without significant change in the flow field whereas the problem is refined in the zones of interest. This enables accounting for the dynamic change in scales of density-driven instabilities. In the second part of the thesis the MsFV algorithm, which originally employs one coarse level, is extended to an arbitrary number of coarse levels. We prove that this keeps the MsFV method efficient for problems with a large number of unknowns. In the last part of this thesis, we focus on the scales that control the evolution of density fingers. The identification of local and global flow patterns allows a coarse description at late times while conserving fine-scale details during onset stage. Results presented in this work advance the understanding of the Multiscale Finite-Volume method and offer efficient dynamic multiscale formulations to simulate density-driven instabilities. - Les nappes phréatiques caractérisées par des structures poreuses et des fractures très perméables représentent un intérêt particulier pour les hydrogéologues et ingénieurs environnementaux. Dans ces milieux, une large variété d'écoulements peut être observée. Les plus communs sont le transport de contaminants par les eaux souterraines, le transport réactif ou l'écoulement simultané de plusieurs phases non miscibles, comme le pétrole et l'eau. L'échelle qui caractérise ces écoulements est définie par l'interaction de l'hétérogénéité géologique et des processus physiques. Un fluide au repos dans l'espace interstitiel d'un milieu poreux peut être déstabilisé par des gradients de densité. Ils peuvent être induits par des changements locaux de température ou par dissolution d'un composé chimique. Les instabilités engendrées par des gradients de densité revêtent un intérêt particulier puisque qu'elles peuvent éventuellement compromettre la qualité des eaux. Un exemple frappant est la salinisation de l'eau douce dans les nappes phréatiques par pénétration d'eau salée plus dense dans les régions profondes. Dans le cas des écoulements gouvernés par les gradients de densité, les échelles caractéristiques de l'écoulement s'étendent de l'échelle poreuse où les phénomènes de croissance des instabilités s'opèrent, jusqu'à l'échelle des aquifères sur laquelle interviennent les phénomènes à temps long. Etant donné que les investigations in-situ sont pratiquement impossibles, les modèles numériques sont utilisés pour prédire et évaluer les risques liés aux instabilités engendrées par les gradients de densité. Une description correcte de ces phénomènes repose sur la description de toutes les échelles de l'écoulement dont la gamme peut s'étendre sur huit à dix ordres de grandeur dans le cas de grands aquifères. Il en résulte des problèmes numériques de grande taille qui sont très couteux à résoudre. Des schémas numériques sophistiqués sont donc nécessaires pour effectuer des simulations précises d'instabilités hydro-dynamiques à grande échelle. Dans ce travail, nous présentons différentes méthodes numériques qui permettent de simuler efficacement et avec précision les instabilités dues aux gradients de densité. Ces nouvelles méthodes sont basées sur les volumes finis multi-échelles. L'idée est de projeter le problème original à une échelle plus grande où il est moins coûteux à résoudre puis de relever la solution grossière vers l'échelle de départ. Cette technique est particulièrement adaptée pour résoudre des problèmes où une large gamme d'échelle intervient et évolue de manière spatio-temporelle. Ceci permet de réduire les coûts de calculs en limitant la description détaillée du problème aux régions qui contiennent un front de concentration mobile. Les aboutissements sont illustrés par la simulation de phénomènes tels que l'intrusion d'eau salée ou la séquestration de dioxyde de carbone.
Resumo:
Préface My thesis consists of three essays where I consider equilibrium asset prices and investment strategies when the market is likely to experience crashes and possibly sharp windfalls. Although each part is written as an independent and self contained article, the papers share a common behavioral approach in representing investors preferences regarding to extremal returns. Investors utility is defined over their relative performance rather than over their final wealth position, a method first proposed by Markowitz (1952b) and by Kahneman and Tversky (1979), that I extend to incorporate preferences over extremal outcomes. With the failure of the traditional expected utility models in reproducing the observed stylized features of financial markets, the Prospect theory of Kahneman and Tversky (1979) offered the first significant alternative to the expected utility paradigm by considering that people focus on gains and losses rather than on final positions. Under this setting, Barberis, Huang, and Santos (2000) and McQueen and Vorkink (2004) were able to build a representative agent optimization model which solution reproduced some of the observed risk premium and excess volatility. The research in behavioral finance is relatively new and its potential still to explore. The three essays composing my thesis propose to use and extend this setting to study investors behavior and investment strategies in a market where crashes and sharp windfalls are likely to occur. In the first paper, the preferences of a representative agent, relative to time varying positive and negative extremal thresholds are modelled and estimated. A new utility function that conciliates between expected utility maximization and tail-related performance measures is proposed. The model estimation shows that the representative agent preferences reveals a significant level of crash aversion and lottery-pursuit. Assuming a single risky asset economy the proposed specification is able to reproduce some of the distributional features exhibited by financial return series. The second part proposes and illustrates a preference-based asset allocation model taking into account investors crash aversion. Using the skewed t distribution, optimal allocations are characterized as a resulting tradeoff between the distribution four moments. The specification highlights the preference for odd moments and the aversion for even moments. Qualitatively, optimal portfolios are analyzed in terms of firm characteristics and in a setting that reflects real-time asset allocation, a systematic over-performance is obtained compared to the aggregate stock market. Finally, in my third article, dynamic option-based investment strategies are derived and illustrated for investors presenting downside loss aversion. The problem is solved in closed form when the stock market exhibits stochastic volatility and jumps. The specification of downside loss averse utility functions allows corresponding terminal wealth profiles to be expressed as options on the stochastic discount factor contingent on the loss aversion level. Therefore dynamic strategies reduce to the replicating portfolio using exchange traded and well selected options, and the risky stock.
Resumo:
Abstract Market prices of corporate bond spreads and of credit default swap (CDS) rates do not match each other. In this paper, we argue that the liquidity premium, the cheapest-to-deliver (CTD) option and actual market segmentation explain the pricing differences. Using the European transaction data from Reuters and Bloomberg, we estimate the liquidity premium that is time- varying and firm-specific. We show that when time-dependent liquidity premiums are considered, corporate bond spreads and CDS rates behave in a much closer way than previous studies have shown. We find that high equity volatility drives pricing differences that can be explained by the CTD option.
Resumo:
Whole-body (WB) planar imaging has long been one of the staple methods of dosimetry, and its quantification has been formalized by the MIRD Committee in pamphlet no 16. One of the issues not specifically addressed in the formalism occurs when the count rates reaching the detector are sufficiently high to result in camera count saturation. Camera dead-time effects have been extensively studied, but all of the developed correction methods assume static acquisitions. However, during WB planar (sweep) imaging, a variable amount of imaged activity exists in the detector's field of view as a function of time and therefore the camera saturation is time dependent. A new time-dependent algorithm was developed to correct for dead-time effects during WB planar acquisitions that accounts for relative motion between detector heads and imaged object. Static camera dead-time parameters were acquired by imaging decaying activity in a phantom and obtaining a saturation curve. Using these parameters, an iterative algorithm akin to Newton's method was developed, which takes into account the variable count rate seen by the detector as a function of time. The algorithm was tested on simulated data as well as on a whole-body scan of high activity Samarium-153 in an ellipsoid phantom. A complete set of parameters from unsaturated phantom data necessary for count rate to activity conversion was also obtained, including build-up and attenuation coefficients, in order to convert corrected count rate values to activity. The algorithm proved successful in accounting for motion- and time-dependent saturation effects in both the simulated and measured data and converged to any desired degree of precision. The clearance half-life calculated from the ellipsoid phantom data was calculated to be 45.1 h after dead-time correction and 51.4 h with no correction; the physical decay half-life of Samarium-153 is 46.3 h. Accurate WB planar dosimetry of high activities relies on successfully compensating for camera saturation which takes into account the variable activity in the field of view, i.e. time-dependent dead-time effects. The algorithm presented here accomplishes this task.
Resumo:
This thesis focuses on theoretical asset pricing models and their empirical applications. I aim to investigate the following noteworthy problems: i) if the relationship between asset prices and investors' propensities to gamble and to fear disaster is time varying, ii) if the conflicting evidence for the firm and market level skewness can be explained by downside risk, Hi) if costly learning drives liquidity risk. Moreover, empirical tests support the above assumptions and provide novel findings in asset pricing, investment decisions, and firms' funding liquidity. The first chapter considers a partial equilibrium model where investors have heterogeneous propensities to gamble and fear disaster. Skewness preference represents the desire to gamble, while kurtosis aversion represents fear of extreme returns. Using US data from 1988 to 2012, my model demonstrates that in bad times, risk aversion is higher, more people fear disaster, and fewer people gamble, in contrast to good times. This leads to a new empirical finding: gambling preference has a greater impact on asset prices during market downturns than during booms. The second chapter consists of two essays. The first essay introduces a foramula based on conditional CAPM for decomposing the market skewness. We find that the major market upward and downward movements can be well preadicted by the asymmetric comovement of betas, which is characterized by an indicator called "Systematic Downside Risk" (SDR). We find that SDR can efafectively forecast future stock market movements and we obtain out-of-sample R-squares (compared with a strategy using historical mean) of more than 2.27% with monthly data. The second essay reconciles a well-known empirical fact: aggregating positively skewed firm returns leads to negatively skewed market return. We reconcile this fact through firms' greater response to negative maraket news than positive market news. We also propose several market return predictors, such as downside idiosyncratic skewness. The third chapter studies the funding liquidity risk based on a general equialibrium model which features two agents: one entrepreneur and one external investor. Only the investor needs to acquire information to estimate the unobservable fundamentals driving the economic outputs. The novelty is that information acquisition is more costly in bad times than in good times, i.e. counter-cyclical information cost, as supported by previous empirical evidence. Later we show that liquidity risks are principally driven by costly learning. Résumé Cette thèse présente des modèles théoriques dévaluation des actifs et leurs applications empiriques. Mon objectif est d'étudier les problèmes suivants: la relation entre l'évaluation des actifs et les tendances des investisseurs à parier et à crainadre le désastre varie selon le temps ; les indications contraires pour l'entreprise et l'asymétrie des niveaux de marché peuvent être expliquées par les risques de perte en cas de baisse; l'apprentissage coûteux augmente le risque de liquidité. En outre, des tests empiriques confirment les suppositions ci-dessus et fournissent de nouvelles découvertes en ce qui concerne l'évaluation des actifs, les décisions relatives aux investissements et la liquidité de financement des entreprises. Le premier chapitre examine un modèle d'équilibre où les investisseurs ont des tendances hétérogènes à parier et à craindre le désastre. La préférence asymétrique représente le désir de parier, alors que le kurtosis d'aversion représente la crainte du désastre. En utilisant les données des Etats-Unis de 1988 à 2012, mon modèle démontre que dans les mauvaises périodes, l'aversion du risque est plus grande, plus de gens craignent le désastre et moins de gens parient, conatrairement aux bonnes périodes. Ceci mène à une nouvelle découverte empirique: la préférence relative au pari a un plus grand impact sur les évaluations des actifs durant les ralentissements de marché que durant les booms économiques. Exploitant uniquement cette relation générera un revenu excédentaire annuel de 7,74% qui n'est pas expliqué par les modèles factoriels populaires. Le second chapitre comprend deux essais. Le premier essai introduit une foramule base sur le CAPM conditionnel pour décomposer l'asymétrie du marché. Nous avons découvert que les mouvements de hausses et de baisses majeures du marché peuvent être prédits par les mouvements communs des bêtas. Un inadicateur appelé Systematic Downside Risk, SDR (risque de ralentissement systématique) est créé pour caractériser cette asymétrie dans les mouvements communs des bêtas. Nous avons découvert que le risque de ralentissement systématique peut prévoir les prochains mouvements des marchés boursiers de manière efficace, et nous obtenons des carrés R hors échantillon (comparés avec une stratégie utilisant des moyens historiques) de plus de 2,272% avec des données mensuelles. Un investisseur qui évalue le marché en utilisant le risque de ralentissement systématique aurait obtenu une forte hausse du ratio de 0,206. Le second essai fait cadrer un fait empirique bien connu dans l'asymétrie des niveaux de march et d'entreprise, le total des revenus des entreprises positiveament asymétriques conduit à un revenu de marché négativement asymétrique. Nous décomposons l'asymétrie des revenus du marché au niveau de l'entreprise et faisons cadrer ce fait par une plus grande réaction des entreprises aux nouvelles négatives du marché qu'aux nouvelles positives du marché. Cette décomposition révélé plusieurs variables de revenus de marché efficaces tels que l'asymétrie caractéristique pondérée par la volatilité ainsi que l'asymétrie caractéristique de ralentissement. Le troisième chapitre fournit une nouvelle base théorique pour les problèmes de liquidité qui varient selon le temps au sein d'un environnement de marché incomplet. Nous proposons un modèle d'équilibre général avec deux agents: un entrepreneur et un investisseur externe. Seul l'investisseur a besoin de connaitre le véritable état de l'entreprise, par conséquent, les informations de paiement coutent de l'argent. La nouveauté est que l'acquisition de l'information coute plus cher durant les mauvaises périodes que durant les bonnes périodes, comme cela a été confirmé par de précédentes expériences. Lorsque la récession comamence, l'apprentissage coûteux fait augmenter les primes de liquidité causant un problème d'évaporation de liquidité, comme cela a été aussi confirmé par de précédentes expériences.
Resumo:
BACKGROUND: Polypharmacy, defined as the concomitant use of multiple medications, is very common in the elderly and may trigger drug-drug interactions and increase the risk of falls in patients receiving vitamin K antagonists. OBJECTIVE: To examine whether polypharmacy increases the risk of bleeding in elderly patients who receive vitamin K antagonists for acute venous thromboembolism (VTE). DESIGN: We used a prospective cohort study. PARTICIPANTS: In a multicenter Swiss cohort, we studied 830 patients aged ≥ 65 years with VTE. MAIN MEASURES: We defined polypharmacy as the prescription of more than four different drugs. We assessed the association between polypharmacy and the time to a first major and clinically relevant non-major bleeding, accounting for the competing risk of death. We adjusted for known bleeding risk factors (age, gender, pulmonary embolism, active cancer, arterial hypertension, cardiac disease, cerebrovascular disease, chronic liver and renal disease, diabetes mellitus, history of major bleeding, recent surgery, anemia, thrombocytopenia) and periods of vitamin K antagonist treatment as a time-varying covariate. KEY RESULTS: Overall, 413 (49.8 %) patients had polypharmacy. The mean follow-up duration was 17.8 months. Patients with polypharmacy had a significantly higher incidence of major (9.0 vs. 4.1 events/100 patient-years; incidence rate ratio [IRR] 2.18, 95 % confidence interval [CI] 1.32-3.68) and clinically relevant non-major bleeding (14.8 vs. 8.0 events/100 patient-years; IRR 1.85, 95 % CI 1.27-2.71) than patients without polypharmacy. After adjustment, polypharmacy was significantly associated with major (sub-hazard ratio [SHR] 1.83, 95 % CI 1.03-3.25) and clinically relevant non-major bleeding (SHR 1.60, 95 % CI 1.06-2.42). CONCLUSIONS: Polypharmacy is associated with an increased risk of both major and clinically relevant non-major bleeding in elderly patients receiving vitamin K antagonists for VTE.
Resumo:
OBJECTIVE: Whether or not a high risk of falls increases the risk of bleeding in patients receiving anticoagulants remains a matter of debate. METHODS: We conducted a prospective cohort study involving 991 patients ≥65 years of age who received anticoagulants for acute venous thromboembolism (VTE) at nine Swiss hospitals between September 2009 and September 2012. The study outcomes were as follows: the time to a first major episode of bleeding; and clinically relevant nonmajor bleeding. We determined the associations between the risk of falls and the time to a first episode of bleeding using competing risk regression, accounting for death as a competing event. We adjusted for known bleeding risk factors and anticoagulation as a time-varying covariate. RESULTS: Four hundred fifty-eight of 991 patients (46%) were at high risk of falls. The mean duration of follow-up was 16.7 months. Patients at high risk of falls had a higher incidence of major bleeding (9.6 vs. 6.6 events/100 patient-years; P = 0.05) and a significantly higher incidence of clinically relevant nonmajor bleeding (16.7 vs. 8.3 events/100 patient-years; P < 0.001) than patients at low risk of falls. After adjustment, a high risk of falls was associated with clinically relevant nonmajor bleeding [subhazard ratio (SHR) = 1.74, 95% confidence interval (CI) = 1.23-2.46], but not with major bleeding (SHR = 1.24, 95% CI = 0.83-1.86). CONCLUSION: In elderly patients who receive anticoagulants because of VTE, a high risk of falls is significantly associated with clinically relevant nonmajor bleeding, but not with major bleeding. Whether or not a high risk of falls is a reason against providing anticoagulation beyond 3 months should be based on patient preferences and the risk of VTE recurrence.
Resumo:
Self-potentials (SP) are sensitive to water fluxes and concentration gradients in both saturated and unsaturated geological media, but quantitative interpretations of SP field data may often be hindered by the superposition of different source contributions and time-varying electrode potentials. Self-potential mapping and close to two months of SP monitoring on a gravel bar were performed to investigate the origins of SP signals at a restored river section of the Thur River in northeastern Switzerland. The SP mapping and subsequent inversion of the data indicate that the SP sources are mainly located in the upper few meters in regions of soil cover rather than bare gravel. Wavelet analyses of the time-series indicate a strong, but non-linear influence of water table and water content variations, as well as rainfall intensity on the recorded SP signals. Modeling of the SP response with respect to an increase in the water table elevation and precipitation indicate that the distribution of soil properties in the vadose zone has a very strong influence. We conclude that the observed SP responses on the gravel bar are more complicated than previously proposed semi-empiric relationships between SP signals and hydraulic head or the thickness of the vadose zone. We suggest that future SP monitoring in restored river corridors should either focus on quantifying vadose zone processes by installing vertical profiles of closely spaced SP electrodes or by installing the electrodes within the river to avoid signals arising from vadose zone processes and time-varying electrochemical conditions in the vicinity of the electrodes.
Resumo:
Preface In this thesis we study several questions related to transaction data measured at an individual level. The questions are addressed in three essays that will constitute this thesis. In the first essay we use tick-by-tick data to estimate non-parametrically the jump process of 37 big stocks traded on the Paris Stock Exchange, and of the CAC 40 index. We separate the total daily returns in three components (trading continuous, trading jump, and overnight), and we characterize each one of them. We estimate at the individual and index levels the contribution of each return component to the total daily variability. For the index, the contribution of jumps is smaller and it is compensated by the larger contribution of overnight returns. We test formally that individual stocks jump more frequently than the index, and that they do not respond independently to the arrive of news. Finally, we find that daily jumps are larger when their arrival rates are larger. At the contemporaneous level there is a strong negative correlation between the jump frequency and the trading activity measures. The second essay study the general properties of the trade- and volume-duration processes for two stocks traded on the Paris Stock Exchange. These two stocks correspond to a very illiquid stock and to a relatively liquid stock. We estimate a class of autoregressive gamma process with conditional distribution from the family of non-central gamma (up to a scale factor). This process was introduced by Gouriéroux and Jasiak and it is known as Autoregressive gamma process. We also evaluate the ability of the process to fit the data. For this purpose we use the Diebold, Gunther and Tay (1998) test; and the capacity of the model to reproduce the moments of the observed data, and the empirical serial correlation and the partial serial correlation functions. We establish that the model describes correctly the trade duration process of illiquid stocks, but have problems to adjust correctly the trade duration process of liquid stocks which present long-memory characteristics. When the model is adjusted to volume duration, it successfully fit the data. In the third essay we study the economic relevance of optimal liquidation strategies by calibrating a recent and realistic microstructure model with data from the Paris Stock Exchange. We distinguish the case of parameters which are constant through the day from time-varying ones. An optimization problem incorporating this realistic microstructure model is presented and solved. Our model endogenizes the number of trades required before the position is liquidated. A comparative static exercise demonstrates the realism of our model. We find that a sell decision taken in the morning will be liquidated by the early afternoon. If price impacts increase over the day, the liquidation will take place more rapidly.
Resumo:
BACKGROUND: This study describes seasonality of congenital anomalies in Europe to provide a baseline against which to assess the impact of specific time varying exposures such as the H1N1 pandemic influenza, and to provide a comprehensive and recent picture of seasonality and its possible relation to etiologic factors. METHODS: Data on births conceived in 2000 to 2008 were extracted from 20 European Surveillance for Congenital Anomalies population-based congenital anomaly registries in 14 European countries. We performed Poisson regression analysis encompassing sine and cosine terms to investigate seasonality of 65,764 nonchromosomal and 12,682 chromosomal congenital anomalies covering 3.3 million births. Analysis was performed by estimated month of conception. Analyses were performed for 86 congenital anomaly subgroups, including a combined subgroup of congenital anomalies previously associated with influenza. RESULTS: We detected statistically significant seasonality in prevalence of anomalies previously associated with influenza, but the conception peak was in June (2.4% excess). We also detected seasonality in congenital cataract (April conceptions, 27%), hip dislocation and/or dysplasia (April, 12%), congenital hydronephrosis (July, 12%), urinary defects (July, 5%), and situs inversus (December, 36%), but not for nonchromosomal anomalies combined, chromosomal anomalies combined, or other anomalies analyzed. CONCLUSION: We have confirmed previously described seasonality for congenital cataract and hip dislocation and/or dysplasia, and found seasonality for congenital hydronephrosis and situs inversus which have not previously been studied. We did not find evidence of seasonality for several anomalies which had previously been found to be seasonal. Influenza does not appear to be an important factor in the seasonality of congenital anomalies.
Resumo:
OBJECTIVE: To estimate the effect of combined antiretroviral therapy (cART) on mortality among HIV-infected individuals after appropriate adjustment for time-varying confounding by indication. DESIGN: A collaboration of 12 prospective cohort studies from Europe and the United States (the HIV-CAUSAL Collaboration) that includes 62 760 HIV-infected, therapy-naive individuals followed for an average of 3.3 years. Inverse probability weighting of marginal structural models was used to adjust for measured confounding by indication. RESULTS: Two thousand and thirty-nine individuals died during the follow-up. The mortality hazard ratio was 0.48 (95% confidence interval 0.41-0.57) for cART initiation versus no initiation. In analyses stratified by CD4 cell count at baseline, the corresponding hazard ratios were 0.29 (0.22-0.37) for less than 100 cells/microl, 0.33 (0.25-0.44) for 100 to less than 200 cells/microl, 0.38 (0.28-0.52) for 200 to less than 350 cells/microl, 0.55 (0.41-0.74) for 350 to less than 500 cells/microl, and 0.77 (0.58-1.01) for 500 cells/microl or more. The estimated hazard ratio varied with years since initiation of cART from 0.57 (0.49-0.67) for less than 1 year since initiation to 0.21 (0.14-0.31) for 5 years or more (P value for trend <0.001). CONCLUSION: We estimated that cART halved the average mortality rate in HIV-infected individuals. The mortality reduction was greater in those with worse prognosis at the start of follow-up.