72 resultados para H-1-NMR PARAMETERS

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. H-1 spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite advances in the diagnosisand treatment of head and neck cancer,survival rates have not improvedover recent years. New therapeuticstrategies, including immunotherapy,are the subject of extensive research.In several types of tumors, the presenceof tumor infiltrating lymphocytes(TILs), notably CD8+ T cellsand dendritic cells, has been correlatedwith improved prognosis. Moreover,some T cells among TILs havebeen shown to kill tumor cells in vitroupon recognition of tumor-associatedantigens. Tumor associated antigensare expressed in a significant proportionof squamous cell carcinoma ofthe head and neck and apparently mayplay a role in the regulation of cancercell growth notably by inhibition ofp53 protein function in some cancers.The MAGE family CT antigens couldtherefore potentially be used as definedtargets for immunotherapy andtheir study bring new insight in tumorgrowth regulation mechanisms. Between1995 - 2005 54 patients weretreated surgically in our institution forsquamous cell carcinoma of the oralcavity. Patient and clinical data wasobtained from patient files and collectedinto a computerized database.For each patient, paraffin embeddedtumor specimens were retrieved andexpression of MAGE CT antigens,p53, NY-OESO-1 were analyzed byimmunohistochemistry. Results werethen correlated with histopathologicalparameter such as tumor depth,front invasion according to Bryne andboth, local control and disease freesurvival. MAGE-A was expressed in52% of patients. NY-ESO-1 and p53expression was found in 7% and 52%cases respectively. A higher tumordepth was significantly correlatedwith expression of MAGE-Aproteins(p = 0.03). No significant correlationcould be made between the expressionof both p53 andNY-OESO-1 andhistopathological parameters. Expressionof tumor-associated antigendid not seem to impact significantlyon patient prognosis. As does thedemonstration of p53 function inhibitionby CT antigens of MAGE family,our results suggest, that tumor associatedantigens may be implicated in tumorprogression mechanisms. Thishypothesis need further investigationto clarify the relationship betweenhost immune response and local tumorbiology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate nuclear magnetic resonance (NMR) parameters of the rhodopsin chromophore in the dark state of the protein and in the early photointermediate bathorhodopsin via first-principles molecular dynamics simulations and NMR chemical shift calculations in a hybrid quantum/classical (QM/MM) framework. NMR parameters are particularly sensitive to structural properties and to the chemical environment, which allows us to address different questions about the retinal chromophore in situ. Our calculations show that both the 13C and the 1H NMR chemical shifts are rather insensitive to the protonation state of Glu181, an ionizable amino acid side chain located in the vicinity of the isomerizing 11-cis bond. Thus, other techniques should be better suited to establish its protonation state. The calculated chemical shifts for bathorhodopsin further support our previously published theoretical structure, which is in very good agreement with more recent X-ray data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The medulla oblongata (MO) contains a high density of glycinergic synapses and a particularly high concentration of glycine. The aims of this study were to measure directly in vivo the neurochemical profile, including glycine, in MO using a spin-echo-based (1)H MRS sequence at TE?=?2.8 ms and to compare it with three other brain regions (cortex, striatum and hippocampus) in the rat. Glycine was quantified in MO at TE?=?2.8 ms with a Cramér-Rao lower bound (CRLB) of approximately 5%. As a result of the relatively low level of glycine in the other three regions, the measurement of glycine was performed at TE?=?20 ms, which provides a favorable J-modulation of overlapping myo-inositol resonance. The other 14 metabolites composing the neurochemical profile were quantified in vivo in MO with CRLBs below 25%. Absolute concentrations of metabolites in MO, such as glutamate, glutamine, ?-aminobutyrate, taurine and glycine, were in the range of previous in vitro quantifications in tissue extracts. Compared with the other regions, MO had a three-fold higher glycine concentration, and was characterised by reduced (p?<?0.001) concentrations of glutamate (-50?±?4%), glutamine (-54?±?3%) and taurine (-78?±?3%). This study suggests that the functional specialisation of distinct brain regions is reflected in the neurochemical profile.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well established that lactate can be used as an energy substrate by the brain by conversion to pyruvate and a subsequent oxidation in the mitochondria. Knowing the need for readily metabolizable substrates directly after ischemia and the protective effect of lactate after excitotoxicity, the aim of this study was to investigate whether lactate administration directly after ischemia could be neuroprotective. In vitro, the addition of 4 mmol/L L-lactate to the medium of rat organotypic hippocampal slices, directly after oxygen and glucose deprivation (OGD), protected against neuronal death, whereas a higher dose of 20 mmol/L was toxic. In vivo, after middle cerebral artery occlusion in the mouse, an intracerebroventricular injection of 2 microL of 100 mmol/L L-lactate, immediately after reperfusion, led to a significant decrease in lesion size, which was more pronounced in the striatum, and an improvement in neurologic outcome. A later injection 1 h after reperfusion did not reduce lesion size, but significantly improved neurologic outcome, which is an important point in the context of a potential clinical application. Therefore, a moderate increase in lactate after ischemia may be a therapeutic tool.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Barbiturates are regularly used as an anesthetic for animal experimentation and clinical procedures and are frequently provided with solubilizing compounds, such as ethanol and propylene glycol, which have been reported to affect brain function and, in the case of (1)H NMR experiments, originate undesired resonances in spectra affecting the quantification. As an alternative, thiopental can be administrated without any solubilizing agents. The aim of the study was to investigate the effect of deep thiopental anesthesia on the neurochemical profile consisting of 19 metabolites and on glucose transport kinetics in vivo in rat cortex compared with alpha-chloralose using localized (1)H NMR spectroscopy. Thiopental was devoid of effects on the neurochemical profile, except for the elevated glucose at a given plasma glucose level resulting from thiopental-induced depression of glucose consumption at isoelectrical condition. Over the entire range of plasma glucose levels, steady-state glucose concentrations were increased on average by 48% +/- 8%, implying that an effect of deep thiopental anesthesia on the transport rate relative to cerebral glucose consumption ratio was increased by 47% +/- 8% compared with light alpha-chloralose-anesthetized rats. We conclude that the thiopental-induced isoelectrical condition in rat cortex significantly affected glucose contents by depressing brain metabolism, which remained substantial at isoelectricity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Barbiturates are regularly used as an anesthetic for animal experimentation and clinical procedures and are frequently provided with solubilizing compounds, such as ethanol and propylene glycol, which have been reported to affect brain function and, in the case of (1)H NMR experiments, originate undesired resonances in spectra affecting the quantification. As an alternative, thiopental can be administrated without any solubilizing agents. The aim of the study was to investigate the effect of deep thiopental anesthesia on the neurochemical profile consisting of 19 metabolites and on glucose transport kinetics in vivo in rat cortex compared with alpha-chloralose using localized (1)H NMR spectroscopy. Thiopental was devoid of effects on the neurochemical profile, except for the elevated glucose at a given plasma glucose level resulting from thiopental-induced depression of glucose consumption at isoelectrical condition. Over the entire range of plasma glucose levels, steady-state glucose concentrations were increased on average by 48% +/- 8%, implying that an effect of deep thiopental anesthesia on the transport rate relative to cerebral glucose consumption ratio was increased by 47% +/- 8% compared with light alpha-chloralose-anesthetized rats. We conclude that the thiopental-induced isoelectrical condition in rat cortex significantly affected glucose contents by depressing brain metabolism, which remained substantial at isoelectricity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantification of short-echo time proton magnetic resonance spectroscopy results in >18 metabolite concentrations (neurochemical profile). Their quantification accuracy depends on the assessment of the contribution of macromolecule (MM) resonances, previously experimentally achieved by exploiting the several fold difference in T(1). To minimize effects of heterogeneities in metabolites T(1), the aim of the study was to assess MM signal contributions by combining inversion recovery (IR) and diffusion-weighted proton spectroscopy at high-magnetic field (14.1 T) and short echo time (= 8 msec) in the rat brain. IR combined with diffusion weighting experiments (with δ/Δ = 1.5/200 msec and b-value = 11.8 msec/μm(2)) showed that the metabolite nulled spectrum (inversion time = 740 msec) was affected by residuals attributed to creatine, inositol, taurine, choline, N-acetylaspartate as well as glutamine and glutamate. While the metabolite residuals were significantly attenuated by 50%, the MM signals were almost not affected (< 8%). The combination of metabolite-nulled IR spectra with diffusion weighting allows a specific characterization of MM resonances with minimal metabolite signal contributions and is expected to lead to a more precise quantification of the neurochemical profile.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nanoparticles developed are based on chitosan, a biocompatible and biodegradable polysaccharide. The chitosan nanoparticles are formed in an entirely water-based process by electrostatic interactions with other biocompatible molecules. As a prerequisite to understand the fate of such nanoparticles in cells, comprehensive characterization and stability studies serve to identify quantitatively the impact of the raw material characteristics and preparation conditions on the nanoparticle characteristics. Methods included H-1 NMR spectroscopy, dilution viscometry, particle size analysis and electron microscopy. Cytotoxicity and cell uptake experiments on RAW 264.7 murine macrophages and p23 murine endothelial cells were performed to investigate the correlation with nanoparticle characteristics and effect of surface decoration with alginate. Cytotoxicity was assessed by the MTT survival test; cell uptake was monitored by fluorescent microscopy using labeled polymers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The neurochemical profile of the cortex develops in a region and time specific manner, which can be distorted by psychiatric and other neurological pathologies. Pre-clinical studies often involve experimental mouse models. In this study, we determined the neurochemical profile of C57BL/6 mice in a longitudinal study design to provide a reference frame for the normal developing mouse cortex. Using in vivo proton NMR spectroscopy at 14 T, we measured the concentrations of 18 metabolites in the anterior and posterior cortex on postnatal days (P) 10, 20, 30, 60 and 90. Cortical development was marked by alterations of highly concentrated metabolites, such as N-acetylaspartate, glutamate, taurine and creatine. Regional specificity was represented by early variations in the concentration of glutamine, aspartate and choline. In adult animals, regional concentration differences were found for N-acetylaspartate, creatine and myo-inositol. In this study, animals were exposed to recurrent isoflurane anaesthesia. Additional experiments showed that the latter was devoid of major effects on behaviour or cortical neurochemical profile. In conclusion, the high sensitivity and reproducibility of the measurements achieved at 14 T allowed us to identify developmental variations of cortical areas within the mouse cortex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The variations of environmental conditions (T°, pH, δ13CDIC, [DIC], δ18O, Mg/Ca, and Sr/Ca) of ostracod habitats were examined to determine the controls of environmental parameters on the chemical and isotopic composition of ostracod valves. Results of a one-year monitoring of environmental parameters at five sites, with depths of between 2 and 70 m, in Lake Geneva indicate that in littoral to sub-littoral zones (2, 5, and 13 m), the chemical composition of bottom water varies seasonally in concert with changes in temperature and photosynthetic activity. An increase of temperature and photosynthetic activity leads to an increase in δ13C values of DIC and to precipitation of authigenic calcite, which results in a concomitant increase of Mg/Ca and Sr/Ca ratios of water. In deeper sites (33 and 70 m), the composition of bottom water remains constant throughout the year and isotopic values and trace element contents are similar to those of deep water within the lake. The chemical composition of interstitial pore water also does not reflect seasonal variations but is controlled by calcite dissolution, aerobic respiration, anaerobic respiration with reduction of sulphate and/or nitrate, and methanogenesis that may occur in the sediment pores. Relative influence of each of these factors on the pore water geochemistry depends on sediment thickness and texture, oxygen content in bottom as well as pore water. Variations of chemical compositions of the ostracod valves of this study vary according to the specific ecology of the ostracod species analysed, that is its life-cycle and its (micro-)habitat. Littoral species have compositions that are related to the seasonal variations of temperature, δ13C values of DIC, and of Mg/Ca and Sr/Ca ratios of water. In contrast, the compositions of profundal species are largely controlled by variations of pore fluids along sediment depth profiles according to the specific depth preference of the species. The control on the geochemistry of sub-littoral species is a combination of controls for the littoral and profundal species as well as the specific ecology of the species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: Triggering receptor expressed on myeloid cells-1 (TREM-1) was reported to be up-regulated in various inflammatory diseases as well as in bacterial sepsis. Increased cell-surface TREM-1 expression was also shown to result in marked plasma elevation of the soluble form of this molecule (sTREM-1) in patients with bacterial infections. In this study, we investigated sTREM-1, procalcitonin and C-reactive protein in postmortem serum in a series of sepsis-related fatalities and control individuals who underwent medico-legal investigations. sTREM-1 was also measured in pericardial fluid and urine. METHODS: Two study groups were prospectively formed, a sepsis-related fatalities group and a control group. The sepsis-related fatalities group consisted of sixteen forensic autopsy cases. Eight of these had a documented clinical diagnosis of sepsis in vivo. The control group consisted of sixteen forensic autopsy cases with various causes of death. RESULTS: Postmortem serum sTREM-1 concentrations were higher in the sepsis group with a mean value of 173.6 pg/ml in septic cases and 79.2 pg/ml in control individuals. The cutoff value of 90 pg/ml provided the best sensitivity and specificity. Pericardial fluid sTREM-1 values were higher in the septic group, with a mean value of 296.7 pg/ml in septic cases and 100.9 pg/ml in control individuals. The cutoff value of 135 pg/ml provided the best sensitivity and specificity. Mean urine sTREM-1 concentration was 102.9 pg/ml in septic cases and 89.3 pg/ml in control individuals. CONCLUSIONS: Postmortem serum sTREM-1, individually considered, did not provide better sensitivity and specificity than procalcitonin in detecting sepsis. However, simultaneous assessment of procalcitonin and sTREM-1 in postmortem serum can be of help in clarifying contradictory postmortem findings. sTREM-1 determination in pericardial fluid can be an alternative to postmortem serum in those situations in which biochemical analyses are required and blood collected during autopsy proves insufficient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Full signal intensity (1)H-[(13)C] NMR spectroscopy, combining a preceding (13)C-editing block based on an inversion BISEP (B(1)-insensitive spectral editing pulse) with a spin-echo coherence-based localization, was developed and implemented at 14.1 T. (13)C editing of the proposed scheme was achieved by turning on and off the (13)C adiabatic full passage in the (13)C-editing block to prepare inverted and noninverted (13)C-coupled (1)H coherences along the longitudinal axis prior to localization. The novel (1)H-[(13)C] NMR approach was applied in vivo under infusion of the glia-specific substrate [2-(13)C] acetate. Besides a approximately 50% improvement in sensitivity, spectral dispersion was enhanced at 14.1 T, especially for J-coupled metabolites such as glutamate and glutamine. A more distinct spectral structure at 1.9-2.2 ppm(parts per million) was observed, e.g., glutamate C3 showed a doublet pattern in both simulated (1)H spectrum and in vivo (13)C-edited (1)H NMR spectra. Besides (13)C time courses of glutamate C4 and glutamine C4, the time courses of glutamate C3 and glutamine C3 obtained by (1)H-[(13)C] NMR spectroscopy were reported for the first time. Such capability should greatly improve the ability to study neuron-glial metabolism using (1)H-observed (13)C-edited NMR spectroscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energy metabolism supports both inhibitory and excitatory neurotransmission processes. This study investigated the specific contribution of astrocytic metabolism to γ-aminobutyric acid (GABA) synthesis and inhibitory GABAergic neurotransmission that remained to be ilucidated in vivo. Therefore, we measured (13) C incorporation into brain metabolites by dynamic (13) C nuclear magnetic resonance spectroscopy at 14.1 T in rats under α-chloralose anaesthesia during infusion of [1,6-(13) C]glucose. The enhanced sensitivity at 14.1 T allowed to quantify incorporation of (13) C into the three aliphatic carbons of GABA non-invasively. Metabolic fluxes were determined with a mathematical model of brain metabolism comprising glial, glutamatergic and GABAergic compartments. GABA synthesis rate was 0.11 ± 0.01 μmol/g/min. GABA-glutamine cycle was 0.053 ± 0.003 μmol/g/min and accounted for 22 ± 1% of total neurotransmitter cycling between neurons and glia. Cerebral glucose oxidation was 0.47 ± 0.02 μmol/g/min, of which 35 ± 1% and 7 ± 1% was diverted to the glutamatergic and GABAergic tricarboxylic acid cycles, respectively. The remaining fraction of glucose oxidation was in glia, where 12 ± 1% of the TCA cycle flux was dedicated to oxidation of GABA. 16 ± 2% of glutamine synthesis was provided to GABAergic neurons. We conclude that substantial metabolic activity occurs in GABAergic neurons and that glial metabolism supports both glutamatergic and GABAergic neurons in the living rat brain. We performed (13) C NMR spectroscopy in vivo at high magnetic field (14.1 T) upon administration of [1,6-(13) C]glucose. This allowed to measure (13) C incorporation into the three aliphatic carbons of GABA in the rat brain, in addition to those of glutamate, glutamine and aspartate. These data were then modelled to determine fluxes of energy metabolism in GABAergic and glutamatergic neurons and glial cells.