4 resultados para H -PPase

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membranes of maize (Zea mays L., cv LG 11) roots were fractionated by sucrose (in presence or absence of Mg2+) or dextran density gradient centrifugations and the locations of organelles were determined using marker enzymes. Latent UDPase was used as a Golgi marker, catalase for the peroxysomes, cytochrome c oxidase for the mitochondria, UDP-Gal-galactosyltransferase for the amyloplast membranes and NADH-cytochrome c reductase for the ER. Two markers were selected for the plasmalemma, the vanadate-sensitive ATPase and UDP-Glc-sterolglucosyltransferase. The distributions of the PPase and vacuolar ATPase were found to be similar after density gradient centrifugation. The PPase and vacuolar ATPase activities were clearly separated from almost all the other markers tested, however, a partial association of both activities with the ER cannot be completely ruled out. The PPase of maize roots is more active and easier to measure than the vacuolar ATPase and is therefore an excellent candidate for use as a tonoplast marker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane transport of proton and calcium (Ca2+) plays a fundamental role in growth and developmental processes in higher plant cells. The plasma membrane contains an ATPase (P-ATPase) that pumps protons into the extracellular space, whereas two proton pumps, a vacuolar-type ATPase (V-ATPase) and a pyrophosphatase (H+-PPase) are associated with the tonoplast and pump protons into the vacuole. The P-ATPase, V-ATPase and H+-PPase catalyse electrogenic H+-translocation, giving rise to a proton motive force used to transport different molecules, via specific transport proteins (channels or carriers: H+-symport or H+-antiport), across the plasma membrane and the tonoplast

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrolytic subunit of the H+-translocating inorganic pyrophosphatase (V-PPase EC 3.6.1.1.) prepared from Rubus hispidus cell cultures has been purified from tonoplast-enriched membranes and analysed by SDS-polyacrylamide gel electrophoresis, Only one polypeptide of M(r) 70 000 was recovered with the V-PPase activity after solubilization in the presence of Triton X-100, purification by gel filtration (Superose) and anion exchange (Mono Q) chromatography. This polypeptide strongly cross-reacted with an antibody raised against the V-PPase from Vigna radiata. The tonoplast-enriched fraction was also used to solubilize and reconstitute the-V-PPase. The proteoliposomes showing a PPi-dependent proton transport activity were purified by gel filtration (Superose) and analysed by SDS-polyacrylamide gel electrophoresis. Only one polypeptide of M(r) 70 000 was recovered with the proton-pumping activity. All these data suggest that the native V-PPase from Rubus is composed of a single kind of polypeptide with an M(r) of 70 000 and representing the catalytic subunit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tonoplast-enriched membranes were prepared from maize (Zea mays L. cv LG 11) primary roots, using sucrose nonlinear gradients. The functional molecular size of the tonoplast ATP-and PPi-dependent proton pumps were analyzed by radiation inactivation. Glucose-6-phosphate dehydrogenase (G6PDH) was added as an internal standard. Frozen samples (-196 degrees C) of the membranes were irradiated with (60)Co for different periods of time. After thawing the samples, the activities of G6PDH, ATPase, and PPase were tested. By applying target theory, the functional sizes of the ATPase and PPase in situ were found to be around 540 and 160 kilodaltons, respectively. The two activities were solubilized and separated by gel filtration chromatography. The different polypeptides copurifying with the two pumps were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two bands (around 59 and 65 kilodaltons) were associated with the ATPase activity, whereas a double band (around 40 kilodaltons) was recovered with the PPase activity.