90 resultados para Guanine Nucleotides
em Université de Lausanne, Switzerland
Resumo:
Drosophila GoLoco motif-containing protein Pins is unusual in its highly efficient interaction with both GDP- and the GTP-loaded forms of the α-subunit of the heterotrimeric Go protein. We analysed the interactions of Gαo in its two nucleotide forms with GoLoco1-the first of the three GoLoco domains of Pins-and the possible structures of the resulting complexes, through combination of conventional fluorescence and FRET measurements as well as through molecular modelling. Our data suggest that the orientation of the GoLoco1 motif on Gαo significantly differs between the two nucleotide states of the latter. In other words, a rotation of the GoLoco1 peptide in respect with Gαo must accompany the nucleotide exchange in Gαo. The sterical hindrance requiring such a rotation probably contributes to the guanine nucleotide exchange inhibitor activity of GoLoco1 and Pins as a whole. Our data have important implications for the mechanisms of Pins regulation in the process of asymmetric cell divisions.
Resumo:
Purine nucleotide pyrophosphotransferase was purified to apparent homogeneity from a culture filtrate of Streptomyces morookaensis. It is a monomeric protein with a molecular weight of 24 000-25 000, and its isoelectric point is 6.9. The enzyme synthesizes purine nucleoside 5'-phosphate (mono, di, or tri) 3'-diphosphates such as pppApp, ppApp, pApp, pppGpp, ppGpp and pppIpp by transferring a pyrophosphoryl group from the 5'-position of ATP, dATP and ppApp to the 3'-position of purine nucleotides. The purified enzyme catalysed the formation of 435 mumol of pppApp and 620 mumol of pppGpp from ATP and GTP per min mg protein under the standard conditions. The enzyme requires absolutely a divalent cation for activity, and optimum pH for the enzyme activity lay above 10 for Mg2+, for Co2+ and Zn2+ from 9 to 9.5, and for Fe2+ from 7.5 to 8. The following Michaelis constants were determined: AMP, 2.78 mM; ADP, 3.23 mM; GMP, 0.89 mM; GDP, 0.46 mM and GTP, 1.54 mM, in the case of ATP donor. The enzyme is inhibited by guanine, guanosine, dGDP, dGTP, N-bromosuccinimide, iodacetate, sodium borate and mercuric acetate.
Resumo:
Adrenoceptors are prototypic members of the superfamily of seven transmembrane domain, G protein-coupled receptors. Study of the properties of several mutationally activated adrenoceptors is deepening understanding of the normal functioning of this ubiquitous class of receptors. The new findings suggest an expansion of the classical ternary complex model of receptor action to include an explicit isomerization of the receptors from an inactive to an active state which couples to the G protein ('allosteric ternary complex model'). This isomerization involves conformational changes which may occur spontaneously, or be induced by agonists or appropriate mutations which abrogate the normal 'constraining' function of the receptor, allowing it to 'relax' into the active conformation. Robert Lefkowitz and colleagues discuss the physiological and pathophysiological implications of these new insights into regulation of receptor activity.
Resumo:
A multicomponent indicator displacement assay ( MIDA) based on an organometallic receptor and three dyes can be used for the identification and quantification of nucleotides in aqueous solution at neutral pH.
Resumo:
Antifungal resistance of Candida species is a clinical problem in the management of diseases caused by these pathogens. In this study we identified from a collection of 423 clinical samples taken from Tunisian hospitals two clinical Candida species (Candida albicans JEY355 and Candida tropicalis JEY162) with decreased susceptibility to azoles and polyenes. For JEY355, the fluconazole (FLC) MIC was 8 μg/ml. Azole resistance in C. albicans JEY355 was mainly caused by overexpression of a multidrug efflux pump of the major facilitator superfamily, Mdr1. The regulator of Mdr1, MRR1, contained a yet-unknown gain-of-function mutation (V877F) causing MDR1 overexpression. The C. tropicalis JEY162 isolate demonstrated cross-resistance between FLC (MIC > 128 μg/ml), voriconazole (MIC > 16 μg/ml), and amphotericin B (MIC > 32 μg/ml). Sterol analysis using gas chromatography-mass spectrometry revealed that ergosterol was undetectable in JEY162 and that it accumulated 14α-methyl fecosterol, thus indicating a perturbation in the function of at least two main ergosterol biosynthesis proteins (Erg11 and Erg3). Sequence analyses of C. tropicalis ERG11 (CtERG11) and CtERG3 from JEY162 revealed a deletion of 132 nucleotides and a single amino acid substitution (S258F), respectively. These two alleles were demonstrated to be nonfunctional and thus are consistent with previous studies showing that ERG11 mutants can only survive in combination with other ERG3 mutations. CtERG3 and CtERG11 wild-type alleles were replaced by the defective genes in a wild-type C. tropicalis strain, resulting in a drug resistance phenotype identical to that of JEY162. This genetic evidence demonstrated that CtERG3 and CtERG11 mutations participated in drug resistance. During reconstitution of the drug resistance in C. tropicalis, a strain was obtained harboring only defective Cterg11 allele and containing as a major sterol the toxic metabolite 14α-methyl-ergosta-8,24(28)-dien-3α,6β-diol, suggesting that ERG3 was still functional. This strain therefore challenged the current belief that ERG11 mutations cannot be viable unless accompanied by compensatory mutations. In conclusion, this study, in addition to identifying a novel MRR1 mutation in C. albicans, constitutes the first report on a clinical C. tropicalis with defective activity of sterol 14α-demethylase and sterol Δ(5,6)-desaturase leading to azole-polyene cross-resistance.
Resumo:
Mycophenolic acid, a selective inhibitor of the de novo synthesis of guanosine nucleotides in T and B lymphocytes, has been proposed to inhibit human immunodeficiency virus (HIV) replication in vitro by depleting the substrate (guanosine nucleotides) for reverse transcriptase. Here we show that mycophenolic acid induced apoptosis and cell death in a large proportion of activated CD4+ T cells, thus indicating that it may inhibit HIV infection in vitro by both virological mechanisms and immunological mechanisms (depletion of the pool of activated CD4+ T lymphocytes). Administration of mycophenolate mophetil, the ester derivate of mycophenolic acid, to HIV-infected subjects treated with anti-retroviral therapy and with undetectable viremia resulted in the reduction of the number of dividing CD4 + and CD8+ T cells and in the inhibition of virus isolation from purified CD4+ T-cell populations. Based on these results, the potential use of mycophenolate mophetil in the treatment of HIV infection deserves further investigation in controlled clinical trials.
Resumo:
STAT transcription factors are expressed in many cell types and bind to similar sequences. However, different STAT gene knock-outs show very distinct phenotypes. To determine whether differences between the binding specificities of STAT proteins account for these effects, we compared the sequences bound by STAT1, STAT5A, STAT5B, and STAT6. One sequence set was selected from random oligonucleotides by recombinant STAT1, STAT5A, or STAT6. For another set including many weak binding sites, we quantified the relative affinities to STAT1, STAT5A, STAT5B, and STAT6. We compared the results to the binding sites in natural STAT target genes identified by others. The experiments confirmed the similar specificity of different STAT proteins. Detailed analysis indicated that STAT5A specificity is more similar to that of STAT6 than that of STAT1, as expected from the evolutionary relationships. The preference of STAT6 for sites in which the half-palindromes (TTC) are separated by four nucleotides (N(4)) was confirmed, but analysis of weak binding sites showed that STAT6 binds fairly well to N(3) sites. As previously reported, STAT1 and STAT5 prefer N(3) sites; however, STAT5A, but not STAT1, weakly binds N(4) sites. None of the STATs bound to half-palindromes. There were no specificity differences between STAT5A and STAT5B.
Resumo:
Virulence factors of Pseudomonas aeruginosa include hydrogen cyanide (HCN). This secondary metabolite is maximally produced at low oxygen tension and high cell densities during the transition from exponential to stationary growth phase. The hcnABC genes encoding HCN synthase were identified on a genomic fragment complementing an HCN-deficient mutant of P. aeruginosa PAO1. The hcnA promoter was found to be controlled by the FNR-like anaerobic regulator ANR and by the quorum-sensing regulators LasR and RhlR. Primer extension analysis revealed two transcription starts, T1 and T2, separated by 29 bp. Their function was confirmed by transcriptional lacZ fusions. The promoter sequence displayed an FNR/ANR box at -42.5 bp upstream of T2 and a lux box centered around -42.5 bp upstream of T1. Expression of the hcn genes was completely abolished when this lux box was deleted or inactivated by two point mutations in conserved nucleotides. The lux box was recognized by both LasR [activated by N-(oxododecanoyl)-homoserine lactone] and RhlR (activated by N-butanoyl-homoserine lactone), as shown by expression experiments performed in quorum-sensing-defective P. aeruginosa mutants and in the N-acyl-homoserine lactone-negative heterologous host P. fluorescens CHA0. A second, less conserved lux box lying 160 bp upstream of T1 seems to account for enhanced quorum-sensing-dependent expression. Without LasR and RhlR, ANR could not activate the hcn promoter. Together, these data indicate that expression of the hcn promoter from T1 can occur under quorum-sensing control alone. Enhanced expression from T2 appears to rely on a synergistic action between LasR, RhlR, and ANR.
Resumo:
Excitotoxic insults induce c-Jun N-terminal kinase (JNK) activation, which leads to neuronal death and contributes to many neurological conditions such as cerebral ischemia and neurodegenerative disorders. The action of JNK can be inhibited by the D-retro-inverso form of JNK inhibitor peptide (D-JNKI1), which totally prevents death induced by N-methyl-D-aspartate (NMDA) in vitro and strongly protects against different in vivo paradigms of excitotoxicity. To obtain optimal neuroprotection, it is imperative to elucidate the prosurvival action of D-JNKI1 and the death pathways that it inhibits. In cortical neuronal cultures, we first investigate the pathways by which NMDA induces JNK activation and show a rapid and selective phosphorylation of mitogen-activated protein kinase kinase 7 (MKK7), whereas the only other known JNK activator, mitogen-activated protein kinase kinase 4 (MKK4), was unaffected. We then analyze the action of D-JNKI1 on four JNK targets containing a JNK-binding domain: MAPK-activating death domain-containing protein/differentially expressed in normal and neoplastic cells (MADD/DENN), MKK7, MKK4 and JNK-interacting protein-1 (IB1/JIP-1).
Resumo:
mRNAs specifying immunoglobulin mu and delta heavy chains are encoded by a single large, complex transcription unit (mu + delta gene). The transcriptional activity of delta gene segments in terminally differentiated, IgM-secreting B lymphocytes is 10-20 times lower than in earlier B-lineage cells expressing delta mRNA. We find that transcription of the mu + delta gene in IgM-secreting murine myeloma cells terminates within a region of 500-1000 nucleotides immediately following the mu membrane (mu m) polyadenylylation site. Transcription decreases only minimally through this region in murine cell lines representative of earlier stages in B-cell development. A DNA fragment containing the mu m polyadenylylation signal gives protein-DNA complexes with different mobilities in gel retardation assays with nuclear extracts from myeloma cells than with nuclear extracts from earlier B-lineage cells. However, using a recently developed "footprinting" procedure in which protein-DNA complexes resolved in gel retardation assays are subjected to nucleolytic cleavage while still in the polyacrylamide gel, we find that the DNA sequences protected by factors from the two cell types are indistinguishable. The factor-binding site on the DNA is located 5' of the mu m polyadenylylation signal AATAAA and includes the 15-nucleotide-long A + T-rich palindrome CTGTAAACAAATGTC. This type of palindromic binding site exhibits orientation-dependent activity consistent with the reported properties of polymerase II termination signals. This binding site is followed by two sets of directly repeated DNA sequences with different helical conformation as revealed by their reactivity with the chemical nuclease 1,10-phenanthroline-copper. The close proximity of these features to the signals for mu m mRNA processing may reflect a linkage of the processes of developmentally regulated mu m polyadenylylation and transcription termination.
Resumo:
Using cryo-electron microscopy we reconstructed the three-dimensional trajectories adopted in cryovitrified solutions by double-stranded DNA molecules in which the backbone of one strand lacked a phosphate at regular intervals of 20 nucleotides. The shape of such nicked DNA molecules was compared with that of DNA molecules with exactly the same sequence but without any single-stranded scissions. Upon changing the salt concentration we observed opposite effects of charge neutralization on nicked and non-nicked DNA. In low salt solutions (10 mM Tris-HCl, 10 mM NaCl) the applied dense nicking caused ca 3.5-fold reduction of the DNA persistence length as compared with non-nicked DNA. Upon increasing the salt concentration (to 150 mM NaCl and 10 mM MgCl2) the persistence length of non-nicked DNA appreciably decreased while that of nicked DNA molecules increased by a factor of 2.
Resumo:
Canine distemper virus (CDV) produces a glycosylated type I fusion protein (F) with an internal hydrophobic signal sequence beginning around 115 residues downstream of the first AUG used for translation initiation. Cleavage of the signal sequence yields the F0 molecule, which is cleaved into the F1 and F2 subunits. Surprisingly, when all in-frame AUGs located in the first third of the F gene were mutated a protein of the same molecular size as the F0 molecule was still expressed from both the Onderstepoort (OP) and A75/17-CDV F genes. We designated this protein, which is initiated from a non-AUG codon protein Fx. Site-directed mutagenesis allowed to identify codon 85, a GCC codon coding for alanine, as the most likely position from which translation initiation of Fx occurs in OP-CDV. Deletion analysis demonstrated that at least 60 nucleotides upstream of the GCC codon are required for efficient Fx translation. This sequence is GC-rich, suggesting extensive folding. Secondary structure may therefore be important for translation initiation at codon 85.
Resumo:
At least 10% of glioblastoma relapses occur at distant and even contralateral locations. This disseminated growth limits surgical intervention and contributes to neurological morbidity. Preclinical data pointed toward a role for temozolomide (TMZ) in reducing radiotherapy-induced glioma cell invasiveness. Our objective was to develop and validate a new analysis tool of MRI data to examine the clinical recurrence pattern of glioblastomas. MRIcro software was used to map the location and extent of initial preoperative and recurrent tumors on MRI of 63 patients in the European Organisation for Research and Treatment of Cancer (EORTC) 26981/22981/National Cancer Institute of Canada (NCIC) CE.3 study into the same stereotaxic space. This allowed us to examine changes of site and distance between the initial and the recurrent tumor on the group level. Thirty of the 63 patients were treated using radiotherapy, while the other patients completed a radiotherapy-plus-TMZ treatment. Baseline characteristics (median age, KPS) and outcome data (progression-free survival, overall survival) of the patients included in this analysis resemble those of the general study cohort. The patient groups did not differ in the promoter methylation status of methyl guanine methyltransferase (MGMT). Overall frequency of distant recurrences was 20%. Analysis of recurrence patterns revealed no difference between the groups in the size of the recurrent tumor or in the differential effect on the distance of the recurrences from the preoperative tumor location. The data show the feasibility of groupwise recurrence pattern analysis. An effect of TMZ treatment on the recurrence pattern in the EORTC 26981/22981/NCIC CE.3 study could not be demonstrated.
Mycophenolic acid formulations in adult renal transplantation - update on efficacy and tolerability.
Resumo:
The description more than 30 years ago of the role of de novo purine synthesis in T and B lymphocytes clonal proliferation opened the possibility for selective immunosuppression by targeting specific enzymatic pathways. Mycophenolic acid (MPA) blocks the key enzyme inosine monophosphate dehydrogenase and the production of guanosine nucleotides required for DNA synthesis. Two MPA formulations are currently used in clinical transplantation as part of the maintenance immunosuppressive regimen. Mycophenolate mofetil (MMF) was the first MPA agent to be approved for the prevention of acute rejection following renal transplantation, in combination with cyclosporine and steroids. Enteric-coated mycophenolate sodium (EC-MPS) is an alternative MPA formulation available in clinical transplantation. In this review, we will discuss the clinical trials that have evaluated the efficacy and safety of MPA in adult kidney transplantation for the prevention of acute rejection and their use in new combination regimens aiming at minimizing calcineurin inhibitor toxicity and chronic allograft nephropathy. We will also discuss MPA pharmacokinetics and the rationale for therapeutic drug monitoring in optimizing the balance between efficacy and safety in individual patients.