25 resultados para Grenville orogeny

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are some striking similarities and some differences between the seismic reflection sections recorded across the fold and thrust belts of the southeast Canadian Cordillera, Quebec-Maine Appalachians and Swiss Alps. In the fold and thrust belts of all three mountain ranges, seismic reflection surveys have yielded high-quality images of. (1) nappes (thin thrust sheets) stacked on top of ancient continental margins; (2) ramp anticlines in the hanging walls of faults that have ramp-flat or listric geometries; (3) back thrusts and back folds that developed during the terminal phases of orogeny; and (4) tectonic wedges and regional decollements. A principal result of the Cordilleran and Appalachian deep crustal studies has been the recognition of master decollements along which continental margin strata have been transported long distances, whereas a principal result of the Swiss Alpine deep crustal program has been the identification of the Adriatic indenter, a crustal-scale wedge that caused delamination of the European lithosphere. Significant crustal roots are observed beneath the fold and thrust belts of the Alps, southeast Canadian Cordillera and parts of the southern Appalachians, but such structures beneath the northern Appalachians have probably been removed by post-orogenic collapse and/or crustal attenuation associated with the Mesozoic opening of the Atlantic Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Cape Caribou River allochthon (CCRA), metaigneous and gneissic units occur as a shallowly plunging synform in the hanging wall of the Grand Lake thrust system (GLTS), a Grenvillian structure that forms the boundary between the Mealy Mountains and Groswater Bay terranes. The layered rocks of the CCRA are cut by a stockwork of monzonite dykes related to the Dome Mountain suite and by metadiabase-amphibolite dykes that probably form part of the ca. 1380 Ma Mealy swarm. The mafic dykes appear to postdate much of the development of subhorizontal metamorphic layering within the lower parts of the CCRA. The uppermost (least metamorphosed) units of the CCRA, the North West River anorthosite-metagabbro and the Dome Mountain monzonite suite, have been dated at 1625 +/- 6 and 1626 +/- 2 Ma, respectively. An amphibolite unit that concordantly underlies the anorthosite-metagabbro and is intruded discordantly by monzonite dykes has given metamorphic ages of 1660 +/- 3 and 1631 +/- 2 Ma. Granitoid gneisses that form the lowest level of the CCRA have given a migmatization age of 1622 +/- 6 Ma. The effects of Grenvillian metamorphism become apparent in the lower levels of the allochthon where gneisses, amphibolite, and mafic dykes have given new generation zircon ages of 1008 +/- 2, 1012 +/- 3, and 1011 +/- 3 Ma, respectively. A posttectonic pegmatite has also given zircon and monazite ages of 1016(-3)(+7) and 1013 +/- 3 Ma, respectively. Although these results indicate new growth of Grenvillian zircon, this process was generally not accompanied by penetrative deformation or melting. Thus, the formation of gneissic fabrics and the overall layered nature of the lower CCRA are a result primarily of Labradorian (1660-1620 Ma) tectonism and intrusion, and probably reflect early movement on an ancestral GLTS. Grenvillian heating and metamorphism (up to granulite facies) was strongly concentrated towards the base of the CCRA and probably occurred during northwestward thrusting of the allochthon over the Groswater Bay terrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Between the original position and their present day location as klippen, the Prealpes Medianes underwent a complex history of paleotectonics and alpine tectonics. Due to the opening of the Piemont ocean the Brianconnais sedimentation realm of the Prealpes Medianes evolved as a rim basin of the northern passive margin during Jurassic to Eocene times. Different paleotectonic features (normal faults, synsedimentary growth structures, inversion structures) developed and were active above a basal detachment in evaporitic layers. The tectonic movements were a consequence of thermal events in the crust. Isolated from the Iberic continent at the end of the Late Cretaceous, the Brianconnais exotic terrain was incorporated into the accretionary prism of the closing Piemont ocean and the incipient alpine orogeny during the Lutetian-Bartonian. The Prealpes Medianes were detached from their homeland during the Bartonian-Priabonian and were transported onto the foreland. The tectonic style is one of a thin-skinned foreland fold and thrust belt. Fault associated fold development above a main decollement, together with internal deformation, represent the Prealpes Medianes main structural features. The very low-grade metamorphic conditions have their origin in the heat flux induced by tectonic burial by overriding nappes in the accretionary prism. After having been transported on top of the developing Helvetic nappes the Prealpes were emplaced in their present day position in front of the Alpine mountain belt during Oligocene times. Post-emplacement and out of sequence thrusting, possibly younger than Oligocene, is observed and can be related to thrusting in the sedimentary substratum and the basement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Upper Lahul region in the NW Himalaya is located in the transition zone between the High Himalayan Crystalline (HHC) to the SW and the Tethyan Zone sedimentary series to the NE. The tectonic evolution of these domains during the Himalayan Orogeny is the consequence of a succession of five deformation events. An early D1 phase corresponds to synmetamorphic, NE verging folding. This deformation created the Tandi Syncline, which consists of Permian to Jurassic Tethyan metasediments cropping out in the core of a large-scale synformal fold within the HHC paragneiss. This tectonic event is interpreted as related to a NE directed nappe stacking (Shikar Beh Nappe), probably during the late Eocene to the early Oligocene. A subsequent D2a phase caused SW verging folding in the HHC. This deformation is interpreted as contemporaneous with late Oligocene to early Miocene SW directed thrusting along the Main Central Thrust. In the Tethyan Zone, a D2b phase is marked by a decollement thrust, a system of reverse faults, and gentle folds, associated with SW directed tectonic movements. This deformation is related to an imbricate structure, characteristic of a shallow structural level, and developed in the frontal part of a nappe affecting the Tethyan Zone units of SE Zanskar (Nyimaling-Tsarap Nappe). A later D3 phase generated the Chandra Dextral Shear Zone (CDSZ), a large-scale, ductile, dextral strike-slip shear zone, located in the transition zone between the HHC and the Tethyan Himalaya. The CDSZ most likely represents a part of a system of early Miocene extensional and/or dextral, strike-slip shear zones-observed at the HHC-Tethyan Zone contact along the entire Himalaya. A final D4 phase induced large-scale doming and NE:verging back folding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ophiolites occur at several places in the Lower Penninic of the W and Central Alps. They are generally ascribed to oceanic crust of a so-called ``Valais ocean'' of Cretaceous age which plays a fundamental role in many models of Alpine paleogeography and geodynamics. The type locality and only observational base for the definition of a ``Valais ocean'' in the W Alps is the Versoyen ophiolitic complex, on the French-Italian boundary W of the Petit St-Bernard col. The idea of a "Valais ocean'' is based on two propositions that are since 40 years the basis for most reconstructions of the Lower Penninic: (1) The Versoyen forms the (overturned) stratigraphic base of the Cretaceous-Tertiary Valais-Tarentaise series; and (2) it has a Cretaceous age. We present new field and isotopic data that severely challenge both propositions. (1) The base of the Versoyen ophiolite is a thrust. It overlies a wildflysch with blocks of Versoyen rocks, named the Mechandeur Formation. This ``supra-Tarentaise'' wildflysch has been confused with an (overturned) stratigraphic transition from the Versoyen to the Valais-Tarentaise series. Thus the contact Versoyen/Tarentaise is not stratigraphic but tectonic, and the Versoyen ophiolite has no link with the Valais basin. This thrust corresponds to an inverse metamorphic discontinuity and to an abrupt change in tectonic style. (2) The contact of the Versoyen complex with the overlying Triassic-Jurassic Petit St-Bernard (PSB) series is stratigraphic (and not tectonic as admitted by all authors since 50 years). Several types of sedimentary structures polarize it and show that the PSB series is younger than the Versoyen. Consequently the Versoyen ophiolitic complex is Paleozoic and forms the basement of the PSB Mesozoic sediments. They both belong to a single tectonic unit, named the Versoyen-Petit St-Bernard nappe. (3) Ion microprobe U-Pb isotopic data on zircons from the main gabbroic intrusion in the Versoyen complex give a crystallization age of 337.0 +/- 4.1 Ma (Visean, Early Carboniferous). These zircons show typical oscillatory zoning and no overgrowth or corrosion. and are interpreted to date the Versoyen magmatism. These U-Pb data are in excellent agreement with our field observations and confirm the Paleozoic age of the Versoyen ophiolite. The existence of a ``Valais ocean'' of Cretaceous age in the W Alps becomes very improbable. The eclogite facies metamorphism of the Versoyen-Petit St-Bernard nappe results from an Alpine intra-continental subduction, guided by a Paleozoic oceanic suture. This is an example of the lone term influence of inherited deep-seated structures on a Much younger orogeny. This might well be a major cause of of the inherent complexity of the Alps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 1986, several near-vertical seismic reflection profiles have been recorded in Switzerland in order to map the deep geologic structure of the Alps. One objective of this endeavour has been to determine the geometries of the autochthonous basement and of the external crystalline massifs, important elements for understanding the geodynamics of the Alpine orogeny. The PNR-20 seismic line W1, located in the Rawil depression of the western Swiss Alps, provides important information on this subject. It extends northward from the `'Penninic front'' across the Helvetic nappes to the Prealps. The crystalline massifs do not outcrop along this profile. Thus, the interpretation of `'near-basement'' reflections has to be constrained by down-dip projections of surface geology, `'true amplitude'' processing, rock physical property studies and modelling. 3-D seismic modelling has been used to evaluate the seismic response of two alternative down-dip projection models. To constrain the interpretation in the southern part of the profile, `'true amplitude'' processing has provided information on the strength of the reflections. Density and velocity measurements on core samples collected up-dip from the region of the seismic line have been used to evaluate reflection coefficients of typical lithologic boundaries in the region. The cover-basement contact itself is not a source of strong reflections, but strong reflections arise from within the overlaying metasedimentary cover sequence, allowing the geometry of the top of the basement to be determined on the basis of `'near-basement'' reflections. The front of the external crystalline massifs is shown to extend beneath the Prealps, about 6 km north of the expected position. A 2-D model whose seismic response shows reflection patterns very similar to the observed is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Western Alpine Are has been created during the Cretaceous and the Tertiary orogenies. The interference patterns of the Tertiary structures suggest their formation during continental collision of the European and the Adriatic Plates, with an accompanying anticlockwise rotation of the Adriatic indenter. Extensional structures are mainly related to ductile deformation by simple shear. These structures developed at a deep tectonic level, in granitic crustal rocks, at depths in excess of 10 km. In the early Palaeogene period of the Tertiary Orogeny, the main Tertiary nappe emplacement resulted from a NW-thrusting of the Austroalpine, Penninic and Helvetic nappes. Heating of the deep zone of the Upper Cretaceous and Tertiary nappe stack by geothermal heat flow is responsible for the Tertiary regional metamorphism, reaching amphibolite-facies conditions in the Lepontine Gneiss Dome (geothermal gradient 25 degrees C/ km). The Tertiary thrusting occurred mainly during prograde metamorphic conditions with creation of a penetrative NW-SE-oriented stretching lineation, X(1) (finite extension), parallel to the direction of simple shear. Earliest cooling after the culmination of the Tertiary metamorphism, some 38 Ma ago, is recorded by the cooling curves of the Monte Rosa and Mischabel nappes to the west and the Suretta Nappe to the east of the Lepontine Gneiss Dome. The onset of dextral transpression, with a strong extension parallel to the mountain belt, and the oldest S-vergent `'backfolding'' took place some 35 to 30 Ma ago during retrograde amphibolite-facies conditions and before the intrusion of the Oligocene dikes north of the Periadriatic Line. The main updoming of the Lepontine Gneiss Dome started some 32-30 Ma ago with the intrusion of the Bergell tonalites and granodiorites, concomitant with S-vergent backfolding and backthrusting and dextral strike-slip movements along the Tonale and Canavese Lines (Argand's Insubric phase). Subsequently, the center of main updoming migrated slowly to the west, reaching the Simplon region some 20 Ma ago. This was contemporaneous with the westward migration of the Adriatic indenter. Between 20 Ma and the present, the Western Aar Massif-Toce culmination was the center of strong uplift. The youngest S-vergent backfolds, the Glishorn anticline and the Berisal syncline fold the 12 Ma Rb/Sr biotite isochron and are cut by the 11 Ma old Rhone-Simplon Line. The discrete Rhone-Simplon Line represents a late retrograde manifestation in the preexisting ductile Simplon Shear Zone. This fault zone is still active today. The Oligocene-Neogene dextral transpression and extension in the Simplon area were concurrent with thrusting to the northwest of the Helvetic nappes, the Prealpes (35-15 Ma) and with the Jura thin-skinned thrust (11-3 Ma). It was also contemporaneous with thrusting to the south of the Bergamasc (> 35-5 Ma) and Milan thrusts (16-5 Ma).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mirdita Ophiolite Zone in Albania is associated with widespread melanges containing components of up to nappe-size. We dated matrix and components of the melange by radiolarians, conodonts, and other taxa. The components consist of radiolarites, pelagic limestones and shallow-water limestones, all of Triassic age, as well as ophiolites. Triassic radiolarite as a primary cover of ophiolite material proves Middle Triassic onset of Mirdita ocean-floor formation. The melange contains a turbiditic radiolarite-rich matrix (''radiolaritic flysch''), dated as Late Bajocian to Early Oxfordian. It formed as a synorogenic sediment during west-directed thrusting of ophiolite and sediment-cover nappes representing ocean floor and underplated fragments of the western continental margin. The tectonic structures formed during these orogenic events (''Younger Kimmeridian or Eohellenic Orogeny'') are sealed by Late Jurassic platform carbonates. The geological history conforms with that of the Inner Dinarides and adjoining areas; we therefore correlate the Mirdita-Pindos Ophiolite Zone with the Vardar Zone and explain its present position by far-distance west-directed thrusting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc-Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D-1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D-2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1-39.7 Ma Ar-40/Ar-39 mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paleontological investigations of the Jurassic of Western Thailand, districts of Mae Sot (Tak-Mae Sot highway, Padaeng Tak and Ban Mae Kut Luang Zinc mines) and Umphang (Klo Tho), provide age constraints for the Late Indosinian orogeny, the Paleotethys closure and the timing of the marine Jurassic inundation of Sundaland. The basal conglomerate of the Jurassic is derived from the pelagic Triassic Mae Sariang substratum. Stratigraphy, microfacies and paleontology of the Jurassic marine strata focus especially on ammonites, bivalves, large benthic foraminifera and algae. Among ammonites, the Tethyan Catulloceras perisphinctoides Gemmellaro marks the Upper Toarcian (Aalensis Zone) along the Tak-Mae Sot highway and Riccardiceras longalvum (Vacek). Malladaites pertinax (Vacek), Abbasites sp. and Vacekia sp. indicate Middle Aalenian to lowermost Bajocian in the Padaeng Mine (SE of Mae Sot) and Klo-Tho (Umphang). Vacekia sp., Spinammatoceras schindewolfi Linares and Sandoval and Malladaites vaceki Linares and Sandoval indicate Middle Aalenian to lowermost Upper Aalenian at Ban Mae Kut Luang (NE of Mae Sot). Among foraminifers, the large benthic foraminifer Timidonella sarda Bassoullet, Chabrier and Fourcade in the Western Tethys is indicative for Aalenian-Bajocian times, as characterized in the section at the Tak-Padaeng Zinc mine and the Klo-Tho Formation near Umphang. The endemic foraminifer Gutnicella kaempferi characterizes the Pu Khloe Khi Formation near Umphang. Among bivalves, shallow marine, dominantly endemic fauna includes Parvamussium donaiense (Mansuy) and Bositra ornate (Quenstedt), from the Toarcian to the Early Bajocian. A consideration of the faunal affinity shows that the fauna is partly endemic with Northern Tethyan (Eurasian) affinity. Crown Copyright (C) 2010 Published by Elsevier B.V. on behalf of International Association for Gondwana Research. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detailed geological mapping and structural study of a complete transect across the northwestern Himalaya allow to describe the tectonic evolution of the north Indian continental margin during the Tethys ocean opening and the Himalayan Orogeny. The Late Paleozoic Tethys rifting is associated with several tectonomagmatic events. In Upper Lahul and SE Zanskar, this extensional phase is recorded by Lower Carboniferous synsedimentary transtensional faults, a Lower Permian stratigraphic unconformity, a Lower Permian granitic intrusion and middle Permian basaltic extrusions (Panjal Traps). In eastern Ladakh, a Permian listric normal fault is also related to this phase. The scarcity of synsedimentary faults and the gradual increase of the Permian syn-rift sediment thickness towards the NE suggest a flexural type margin. The collision of India and Asia is characterized by a succession of contrasting orogenic phases. South of the Suture Zone, the initiation of the SW vergent Nyimaling-Tsarap Nappe corresponds to an early phase of continental underthrusting. To the S, in Lahul, an opposite underthrusting within the Indian plate is recorded by the NE vergent Tandi Syncline. This structure is associated with the newly defined Shikar Beh Nappe, now partly eroded, which is responsible for the high grade (amphibolite facies) regional metamorphism of South Lahul. The main thrusting of the Nyimaling-Tsarap Nappe followed the formation of the Shikar Beh Nappe. The Nyimaling-Tsarap Nappe developed by ductile shear of the upper part of the subducted Indian continental margin and is responsible for the progressive regional metamorphism of SE Zanskar, reaching amphibolite facies below the frontal part of the nappe, near Sarchu. In Upper Lahul, the frontal parts of the Nyimaling-Tsarap and Shikar Beh nappes are separated by a zone of low grade metamorphic rocks (pumpellyite-actinolite facies to lower greenschist facies). At high structural level, the Nyimaling-Tsarap Nappe is characterized by imbricate structures, which grade into a large ductile shear zone with depth. The related crustal shortening is about 87 km. The root zone and the frontal part of this nappe have been subsequently affected by two zones of dextral transpression and underthrusting: the Nyimaling Shear Zone and the Sarchu Shear Zone. These shear zones are interpreted as consequences of the counterclockwise rotation of the continental underthrusting direction of India relative to Asia, which occurred some 45 and 36 Ma ago, according to plate tectonic models. Later, a phase of NE vergent `'backfolding'' developed on these two zones of dextral transpression, creating isoclinal folds in SE Zanskar and more open folds in the Nyimaling Dome and in the Indus Molasse sediments. During a late stage of the Himalayan Orogeny, the frontal part of the Nyimaling-Tsarap Nappe underwent an extension of about 15 km. This phase is represented by two types of structures, responsible for the tectonic unroofing of the amphibolite facies rocks of the Sarchu area: the Sarchu high angle Normal Fault, cutting a first set of low angle normal faults, which have been created by reactivation of older thrust planes related to the Nyimaling-Tsarap Nappe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The following main lithostratigraphic units have been distinguished in the Domes Area. The Kibaran basement complex composed of gneisses, migmatites with amphibolite bands and metagranites is exposed in dome structures; metamorphic features of Kibaran age have been almost completely obliterated by extensive Lufilian reactivation. The post-Kibaran cover sequence is subdivided into the Lower Roan Group consisting of well-preserved quartzites with high Mg content, talc-bearing, extremely foliated schists intercalated with pseudo-conglomerates of tectonic origin and the Upper Roan Group including dolomitic marbles with rare stromatolites, metapelites and a sequence of detrital metasediments, with local volcano-sedimentary components and interlayered banded ironstones. The sediments of the Lower Roan Group are interpreted as continental to lagoonal-evaporitic deposits partly converted into the talc-kyanite + garnet assemblage characteristic of ``white schists''. The dolomites and metapelites of the Upper Roan Group are attributed to a carbonate platform sequence progressively subsiding under terrigenous deposits, whilst the detrital metasediments and BIF may be interpreted as a basinal sequence, probably deposited on oceanic crust grading laterally into marbles. Metagabbros and metabasalts are considered as remnants of an ocean-floor-type crustal unit probably related to small basins. Alkaline stocks of Silurian age intruded the post-Kibaran cover. Significant ancestral tectonic discontinuities promoted the development of a nappe pile that underwent high-pressure metamorphism during the Lufilian orogeny and all lithostratigraphic units. Rb-Sr and K-Ar and U-Pb data indicate an age of 700 Ma for the highest grade metamorphism and 500 Ma for blocking of the K-Ar and Rb-Sr system in micas, corresponding to the time when the temperature dropped below 350-degrees-400-degrees-C and to an age of about 400 Ma for the emplacement of hypabyssal syenitic bodies. A first phase of crustal shortening by decoupling of basement and cover slices along shallow shear zones has been recognized. Fluid-rich tectonic slabs of cover sediments were thus able to transport fluids into the anhydrous metamorphic basement or mafic units. During the subsequent metamorphic re-equilibration stage of high pressure, pre-existing thrusts horizons were converted into recrystallized mylonites. Due to uplift, rocks were re-equilibrated into assemblages compatible with lower pressures and slightly lower temperatures. This stage occurs under a decompressional (nearly adiabatic) regime, with P(fluid) almost-equal-to P(lithostatic). It is accompanied by metasomatic development of minerals, activated by injection of hot fluids. New or reactivated shear zones and mylonitic belts were the preferred conduits of fluids. The most evident regional-scale effect of these processes is the intense metasomatic scapolitization of formerly plagioclase-rich lithologies. Uraninite mineralization can probably be assigned to the beginning of the decompressional stage. A third regional deformation phase characterized by open folds and local foliation is not accompanied by significant growth of new minerals. However, pitchblende mineralization can be ascribed to this phase as late-stage, short-range remobilization of previously existing deposits. Finally, shallow alkaline massifs were emplaced when the level of the Domes Area now exposed was already subjected to exchange with meteoric circuits, activated by residual geothermal gradients generally related to intrusions or rifting. Most of the superficial U-showings with U-oxidation products were probably generated during this relatively recent phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Crystalline Nappe of the High Himalayan Crystalline has been examined along the Kulu Valley and its vicinity (Mandi-Khoksar transect). This nappe was believed to have undergone deformation related only to its transport towards the SW essentially during the `'Main Central Thrust event''. New data has led to the conclusion that during the Himalayan orogeny, two distinctive phases, related to two opposite transport directions, characterize the evolution of this part of the chain, before the creation of the late NE-vergent backfolding. The first phase corresponds to an early NE-vergent folding and thrusting, creating the Tandi Syncline and the NE-oriented Shikar Beh Nappe stack, with a displacement amplitude of about 50 km. Two schistosities, together with a strong stretching lineation are developed at a deep tectonic level under amphibolite facies conditions (kyanite-staurolite-garnet-two mica schists). At a higher tectonic level and in the southern part of the section (Tandy Syncline and southern Kulu Valley between Kulu and Mandi) one or two schistosities are developed in the greenschist facies grade rocks (garnet-biotite and biotite schists). These structures and the associated Barrovian type metamorphism are all related to the NE-verging Shikar Beh Nappe. The creation of the NE-verging Shikar Beh Nappe may be explained by the reactivation of a SW dipping listric normal fault of the N Indian flexural passive margin, during the early stages of the Himalayan orogeny. In the second phase, the still hot metamorphic rocks of the Shikar Beh Nappe were folded and thrust towards the SW (mainly along the MBT and the MCT with a displacement in excess of 100 km) onto the cold, low-grade metamorphic rocks of the Larji-Kulu-Rampur Window or, near Mandi, on the non-metamorphic sandstones of the Ganges Molasse (Siwaliks). Sense of shear criteria and a strong NE-SW stretching-lineation indicate that the Crystalline Nappe has been overthrusted towards the SW. Thermometry on synkinematically crystallised garnet-biotite and garnet-hornblende pairs reveals the lower amphibolite facies temperature conditions related to the Crystalline Nappe formation. From the muscovite and biotite Rb-Sr cooling ages, the Shikar Beh Nappe emplacement occurred before 32 Ma and the southwestward thrusting of the Crystalline Nappe began before 21 Ma. Our model involving two opposite directions of thrusting goes against the conventional idea of only one main SW-oriented transport direction in the High Himalayan Crystalline Nappes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trace element and isotopic compositions of marine fossils and sediment were analyzed from several Miocene deposits in the circum-Alpine region in order to reconstruct the paleoceanographic and paleoclimatic changes related to sea level changes, basin evolution and Alpine orogeny. To the north and the east the Alps were border by an epicontinental sea, the Paratethys, while to the south the Mediterranean surrounded the uplifting mountains during the Miocene. The thesis mainly focused on sediments and fossils sampled from Miocene beds of these two oceanic provinces. The north Alpine Molasse, the Vienna and Pannonian Basins were located in the Western and Central Paratethys. O-isotope compositions of well-preserved phosphatic fossils in these sediments support deposition under sub-tropical to warm-temperate climate with water temperatures between 14 to 28 °C for the Miocene. δ18O values of fossil shark teeth from different horizons vary similarly to those of the global trend until the end of the Badenian, however the δ18O values show wider range, which indicates local effects iii the sub-basins. The trend of 87Sr/86Sr in the samples roughly agrees with an open ocean environment for the Miocene. Yet a number of samples deviate from typical open ocean compositions with higher ratios suggesting modification of seawater by local and old terrestrial sources. In contrast, two exceptional teeth from the locality of La Moliere have extremely low δ18O values and low 87Sr/86Sr. However, the REE patterns of their enameloid are similar to those of teeth having O and Sr isotopic compositions typical of a marine setting at this site. Collectively, this suggests that the two teeth formed while the sharks frequented a freshwater environment with very low 18O-content and 87Sr/86Sr controlled by Mesozoic calcareous rocks. This is consistent with a paleogeography of high-elevation (~2300m) Miocene Alps adjacent to a marginal sea. The local effects are also reflected in the εNd values of the Paratethyan fossils, which is compatible with input from ancient crystalline rocks and Mesozoic sediments, while other samples with elevated εNd values indicate an influence of Neogene volcanism on the water budget. Excluding samples whose isotopic compositions reflect a local influence on the water column, an average εNd value of -7.9 ± 0.5 may be inferred for the Paratethys seawater. This value is indistinguishable from the Miocene value of the Indian Ocean, supporting a dominant role of ludo-Pacific water masses in the Paratethys. Regarding the Mediterranean, stable C-and O-isotope compositions of benthic and planktonic foraminifera from the Umbria-Marche region (UMC) have an offset typical for their habitats and the changes in composition mimic global changes, suggesting that the regional conditions of climate and the carbon cycle were controlled by global changes. The radiogenic isotope compositions of the fossil assemblages allow for distinction of periods. From 25 to 19 Ma, high εNd values and low 87Sr/86Sr of sediments and fossils support intense tectonism and volcanism, related to the opening of the western Mediterranean. Between 19 and 13 Ma the Mediterranean has εNd values that are largely controlled by incursion of Indian Ocean water. Brief periods of local hinterland control on seawater compositions are indicated by spikes in the εNd record, coinciding with volcanic events and a short sea-level decrease at about 15.2 Ma. Lower 87Sr/86Sr compared to the open ocean is compatible with rapid uplift of the hinterland and intense influx of Sr from Mesozoic carbonates of the western Apennines, while higher 87Sr/86Sr for other sites indicates erosion of old crustal silicate rocks. Finally, from 13 to 7 Ma the fossils have 87Sr/86Sr similar to those of Miocene seawater and their εNd values indicates fluctuating influence of Atlantic, and Indian Ocean or Paratethys sources of seawater entering the Mediterranean, driven by global sealevel changes and local tectonism. RÉSUMÉ DE LA THÈSE Les compositions en éléments traces et isotopiques de fossiles marins et de sédiments on été analysées à partir de nombreux dépôts marins dans la région circum Alpine dans le but de reconstruire les changements paléocéanographiques et paléoclimatiques liés aux changements du niveau marin, à l'évolution en bassins et à l'orogénie alpine. Au nord et à l'est des Alpes, une mer épicontinentale appelée Paratéthys s'est ouverte, alors que plus au sud la mer Méditerranée bordait au Miocène les Alpes naissantes. Le but de cette recherche est de se concentrer sur les sédiments et les fossiles provenant des couches du Miocènes de ces deux provinces marines. Les bassins de la Molasse Alpine du nord, de Vienne et Pannonien étaient situés au niveau de la Paratéthys Occidentale et Centrale. Les compositions isotopiques de l'oxygène de fossiles phosphatés bien préservés dans ces sédiments étayent la théorie d'un dépôt sous un climat subtropical à tempéré chaud avec des températures entre 14 et 28°C pendant le Miocène. Les valeurs δ18O des fossiles sont similaires à la tendance globale jusqu'à la fin du Badénien. Cependant les larges fluctuations en δ18O indiquent des effets locaux au niveau des sous bassins. En outre, deux dents de requin exceptionnelles présentent des valeurs extrêmement basses de δ18O. Ces données suggèrent que ces deux dents se sont formées alors que les requins fréquentaient un environnement d'eau douce avec de faibles valeurs de 18O. Le calcul de la composition isotopique de l'oxygène de cette eau douce permet d'obtenir une estimation de la paléoélévatian moyenne des Alpes du Miocène (~2300m). La tendance 87Sr/86Sr pour ces échantillons concorde approximativement avec un environnement d'océan ouvert au cours du Miocène. Toutefois un nombre d'échantillons dévie des compositions d'océan ouvert typiques, avec des rapports élevés suggérant des modifications de l'eau de mer par des sources locales et terrestres. Les effets locaux sont aussi reflétés au niveau des valeurs en εNd des fossiles paratéthysiens. Ceci est cohérent avec un apport d'anciennes roches cristallines et de sédiments mésozoïques, tandis que d'autres échantillons avec des valeurs hautes de εNd indiquent une influence d'un volcanisme néogène dans le budget marin. En excluant les échantillons dont les compositions isotopiques confirment une influence locale, une valeur moyenne de εNd de 7.9 t 0.5 peut être déduite pour l'eau de la Parathétys. Cette valeur est semblable à la valeur correspondant à l'Océan Indien durant le Miocène, confirmant un rôle dominant de cet océan dans la Paratéthys. Au niveau de la Méditerranée, les compositions en isotopes stables du Carbone et de l'Oxygène de foraminifères planctoniques et benthique de la région Umbria-Marche présentent un offset typique à leurs habitats. De plus les changements dans leurs compositions suivent les changements globaux, suggérant ainsi que les conditions climatiques régionales et le cycle du carbone étaient contrôlés par des phénomènes globaux. La composition en isotopes radiogéniques d'assemblages fossiles permet une reconnaissance sur trois périodes distinctes. De 25 à 19 millions d'années (Ma), des valeurs élevées de εNd et un faible rapport 87Sr/86Sr dans les sédiments soutiennent l'idée d'une activité tectonique et volcanique intense, liée à l'ouverture de la Méditerranée occidentale. Entre 19 et 13 Ma, la Méditerranée montre des valeurs de εNd qui sont largement contrôlées par une incursion d'eau provenant de l'Océan Indien. En effet, aux alentours de 15,2 Ma, des pics dans l'enregistrement des valeurs de εNd, coïncidant avec des événements volcaniques et de brèves diminutions du niveau marin. Enfin, de 13 à 7 Ma, les fossiles ont des rapports ß7Sr/8fiSr similaires à ceux de l'eau de mer au Miocène. Leurs valeurs de εNd indiquent une influence changeante de l'océan Atlantique, et de l'océan Indien ou des sources d'eau de merde la Parathétys qui entrent dans les bassins méditerranéens. Ce changement est guidé par des modifications globales du niveau marin et par la tectonique locale. RÉSUMÉ DE LA THÈSE (POUR LE GRAND PUBLIC) Les analyses des compositions en éléments traces et isotopiques des fossiles marins sont un outil très utile pour reconstruire les conditions océaniques et climatiques anciennes. Ce travail de thèse se concentre sur les sédiments déposés dans un environnement marin proches des Alpes au cours du Miocène, entre 23 et 7 millions d'années (Ma). Cette période est caractérisée par une tectonique alpine active, ainsi que par des changements climatiques et océanographiques globaux importants. Dans le but de tracer ces changements, les compositions isotopiques du Strontium, du Néodyme, de l'Oxygène et du Carbone ont été analysées dans des fossiles bien préservés ainsi que les sédiments contemporains. Les échantillons proviennent de deux provinces océaniques distinctes, la première est la Mer Méditerranée, et l'autre est une mer épicontinentale appelée Parathétys, qui existait au nord et à l'est des Alpes durant le Miocène. Au niveau de la Parathétys Occidentale et Orientale, les compositions isotopiques d'oxygène de dents de requins confirment un dépôt sous un climat subtropical à tempéré chaud avec des températures d'eau entre 14 et 28°C au Miocène. En outre, deux dents de requins exceptionnelles ont enregistré des compositions isotopiques d'oxygène extrêmement basses. Cela suggère que ces deux dents se sont formées alors que les requins entraient dans un système d'eau douce. Le calcul de la composition isotopique de l'oxygène de cette eau douce permet d'obtenir une estimation de la paléoélévation des Alpes au Miocène qui est aussi élevée que celle d'aujourd'hui. La tendance isotopique du Strontium pour ces échantillons concorde approximativement avec un environnement d'océan ouvert. Cependant un certain nombre d'échantillons indique des modifications de l'eau de mer par des sources terrestres locales. Les effets locaux sont aussi visibles au niveau des compositions isotopiques du Néodyme, qui sont en accord avec un apport provenant de roches cristallines anciennes et de sédiments du Mésozoïque, alors que d'autres échantillons indiquent une influence volcanique néogène dans le budget marin. A l'exclusion des échantillons dont les compositions correspondent à une influence locale, les compositions isotopiques du Néodyme de la Parathétys sont très similaires aux valeurs de l'Océan Indien, montrant ainsi un rôle important des masses d'eau IndoPacifiques dans cette région. Au niveau de la Méditerranée, les compositions en isotopes stables du Carbone et de l'Oxygène de foraminifères planctoniques et benthique de la région Umbria-Marche présentent un offset typique à leurs habitats. De plus, les changements dans leurs compositions suivent les changements globaux, suggérant ainsi que les conditions climatiques régionales et le cycle du carbone étaient contrôlés par des phénomènes globaux. La composition en isotopes radiogéniques d'assemblages fossiles permet une reconnaissance sur trois périodes distinctes. De 25 à 19 Ma, des rapport isotopiques élevés pour le Néodyme et faibles pour le Strontium dans les sédiments et les fossiles soutiennent l'idée d'une activité tectonique et volcanique intense, liée à l'ouverture de la Méditerranée occidentale. Entre 19 et 13 Ma, la Méditerranée présente des rapports isotopiques du Néodyme qui sont largement contrôlés par une incursion d'eau provenant de l'Océan Indien. En effet, aux alentours de 15,2 Ma, des pics dans l'enregistrement des valeurs des isotopes du Néodyme coïncident avec des événements volcaniques et de brèves diminutions du niveau marin. Finalement, de 13 à 7 Ma, les fossiles ont des rapports isotope Strontium similaires à ceux de l'eau de mer au Miocène. Les rapports isotopiques du Néodyme indiquent une influence changeante de l'océan Atlantique, et de l'océan Indien ou des sources d'eau de mer de la Parathétys qui entrent dans les bassins méditerranéens. Ce changement est guidé par des modifications globales du niveau marin et par la tectonique locale.