4 resultados para Gran Bretaña-Historia-Richard I, 1189-1199-Novela
em Université de Lausanne, Switzerland
Resumo:
Stressful situations during development can shape the phenotype for life by provoking a trade-off between development and survival. Stress hormones, mainly glucocorticoids, play an important orchestrating role in this trade-off. Hence, how stress sensitive an animal is critically determines the phenotype and ultimately fitness. In several species, darker eumelanic individuals are less sensitive to stressful conditions than less eumelanic conspecifics, which may be due to the pleiotropic effects of genes affecting both coloration and physiological traits. We experimentally tested whether the degree of melanin-based coloration is associated with the sensitivity to an endocrine response to stressful situations in the barn owl. We artificially administered the mediator of a hormonal stress response, corticosterone, to nestlings to examine the prediction that corticosterone-induced reduction in growth rate is more pronounced in light eumelanic nestlings than in darker nest mates. To examine whether such an effect may be genetically determined, we swapped hatchlings between randomly chosen pairs of nests. We first showed that corticosterone affects growth and, thus, shapes the phenotype. Second, we found that under corticosterone administration, nestlings with large black spots grew better than nestlings with small black spots. As in the barn owl the expression of eumelanin-based coloration is heritable and not sensitive to environmental conditions, it is therefore a reliable, genetically based sign of the ability to cope with an increase in blood corticosterone level.
Resumo:
AIM: Atomic force microscopy nanoindentation of myofibers was used to assess and quantitatively diagnose muscular dystrophies from human patients. MATERIALS & METHODS: Myofibers were probed from fresh or frozen muscle biopsies from human dystrophic patients and healthy volunteers, as well as mice models, and Young's modulus stiffness values were determined. RESULTS: Fibers displaying abnormally low mechanical stability were detected in biopsies from patients affected by 11 distinct muscle diseases, and Young's modulus values were commensurate to the severity of the disease. Abnormal myofiber resistance was also observed from consulting patients whose muscle condition could not be detected or unambiguously diagnosed otherwise. DISCUSSION & CONCLUSION: This study provides a proof-of-concept that atomic force microscopy yields a quantitative read-out of human muscle function from clinical biopsies, and that it may thereby complement current muscular dystrophy diagnosis.
Resumo:
The autosomal recessive forms of limb-girdle muscular dystrophies are encoded by at least five distinct genes. The work performed towards the identification of two of these is summarized in this report. This success illustrates the growing importance of genetics in modern nosology.
Resumo:
AIM: Atomic force microscopy nanoindentation of myofibers was used to assess and quantitatively diagnose muscular dystrophies from human patients. MATERIALS & METHODS: Myofibers were probed from fresh or frozen muscle biopsies from human dystrophic patients and healthy volunteers, as well as mice models, and Young's modulus stiffness values were determined. RESULTS: Fibers displaying abnormally low mechanical stability were detected in biopsies from patients affected by 11 distinct muscle diseases, and Young's modulus values were commensurate to the severity of the disease. Abnormal myofiber resistance was also observed from consulting patients whose muscle condition could not be detected or unambiguously diagnosed otherwise. DISCUSSION & CONCLUSION: This study provides a proof-of-concept that atomic force microscopy yields a quantitative read-out of human muscle function from clinical biopsies, and that it may thereby complement current muscular dystrophy diagnosis.