244 resultados para Golgi complex
em Université de Lausanne, Switzerland
Resumo:
GTPases of the Rab1 subclass are essential for membrane traffic between the endoplasmic reticulum (ER) and Golgi complex in animals, fungi and plants. Rab1-related proteins in higher plants are unusual because sequence comparisons divide them into two putative subclasses, Rab-D1 and Rab-D2, that are conserved in monocots and dicots. We tested the hypothesis that the Rab-D1 and Rab-D2 proteins of Arabidopsis represent functionally distinct groups. RAB-D1 and RAB-D2a each targeted fluorescent proteins to the same punctate structures associated with the Golgi stacks and trans-Golgi-network. Dominant-inhibitory N121I mutants of each protein inhibited traffic of diverse cargo proteins at the ER but they appeared to act via distinct biochemical pathways as biosynthetic traffic in cells expressing either of the N121I mutants could be restored by coexpressing the wild-type form of the same subclass but not the other subclass. The same interaction was observed in transgenic seedlings expressing RAB-D1 [N121I]. Insertional mutants confirmed that the three Arabidopsis Rab-D2 genes were extensively redundant and collectively performed an essential function that could not be provided by RAB-D1, which was non-essential. However, plants lacking RAB-D1, RAB-D2b and RAB-D2c were short and bushy with low fertility, indicating that the Rab-D1 and Rab-D2 subclasses have overlapping functions.
Resumo:
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins constitute the core of an ancient vesicle fusion machine that diversified into distinct sets that now function in different trafficking steps in eukaryotic cells. Deciphering their precise mode of action has proved challenging. SM proteins are thought to act primarily through one type of SNARE protein, the syntaxins. Despite high structural similarity, however, contrasting binding modes have been found for different SM proteins and syntaxins. Whereas the secretory SM protein Munc18 binds to the ‟closed conformation" of syntaxin 1, the ER-Golgi SM protein Sly1 interacts only with the N-peptide of Sed5. Recent findings, however, indicate that SM proteins might interact simultaneously with both syntaxin regions. In search for a common mechanism, we now reinvestigated the Sly1/Sed5 interaction. We found that individual Sed5 adopts a tight closed conformation. Sly1 binds to both the closed conformation and the N-peptide of Sed5, suggesting that this is the original binding mode of SM proteins and syntaxins. In contrast to Munc18, however, Sly1 facilitates SNARE complex formation by loosening the closed conformation of Sed5.
Resumo:
All plants are typically confronted to simultaneous biotic and abiotic stress throughout their life cycle. Low inorganic phosphate (Pi) is the most common nutrient deficiency limiting plant growth in natural and agricultural ecosystems while insect herbivory accounts for major losses in plant productivity and impacts on ecological and evolutionary changes in plant populations. Here we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defence against insect herbivory. The phol mutant is impaired in the translocation of Pi from roots to shoots and shows the typical symptoms associated with Pi deficiency, including high anthocyanin and poor shoot growth. These phol shoot phenotypes were significantly attenuated by blocking the JA biosynthesis or signalling pathways. Wounded phol leaves hyper-accumulated JA in comparison to wild type, leading to increased resistance against the generalist herbivore Spodoptera littoralis. Pi deficiency also triggered enhanced resistance to herbivory in wild-type Arabidopsis as well as tomato and tobacco, revealing that the link between Pi deficiency and JA-mediated herbivory resistance is conserved in a diversity of plants, including crops. We performed a phol suppressor screen to identify new components involved in the adaptation of plants to Pi deficiency. We report that the THO RNA TRANSCRIPTION AND EXPORT (THO/TREX) complex is a crucial component involved in modulating the Pi- deficiency response. Knockout mutants of at least three members of the THO/TREX complex, including TEX1, HPR1, and TH06, can suppress the phol shoot phenotype. Grafting experiments showed that loss of function of TEX1 only in the root was sufficient to suppress the reduced shoot growth phenotype of phol while maintaining low Pi contents. This indicates that TEX1 is involved in a long distance root-to-shoot signalling component of the Pi-deficiency response. We identified a small MYB-like transcription factor, RAD LIKE 3 (RL3), as a potential downstream target of the THO/TREX complex. RL3 expression is induced in phol mutants but attenuated in phol-7 texl-4 double mutants. Identical to knockout mutants of the THO/TREX complex, rl3 mutants can suppress the phol shoot phenotypes. Interestingly, RL3 is induced during Pi deficiency and is described in the literature as likely being mobile. It is therefore a promising new candidate involved in the root-to-shoot Pi-deficiency signalling response. Finally, we report that PHOl and its homologue PH01:H3 are involved in the co-regulation of Pi and zinc (Zn) homeostasis. PH01;H3 is up-regulated in response to Zn deficiency and, like PHOl, is expressed in the root vascular cylinder and localizes to the Golgi when expressed transiently in tobacco cells. The phol;h3 mutant accumulates more Pi as compared to wild-type when grown in Zn-deficient medium, but this increase is abolished in the phol phol;h3 double mutant. These results suggest that PH01;H3 restricts the PHOl-mediated root-to-shoot Pi transfer in responsé to Zn deficiency. Résumé Au cours de leur cycle de vie, toutes les plantes sont généralement confrontées à divers stress biotiques et abiotiques. La carence nutritionnelle la plus fréquente, limitant la croissance des plantes dans les écosystèmes naturels et agricoles, est la faible teneur en phosphate inorganique (Pi). Au niveau des stress biotiques, les insectes herbivores sont responsables de pertes majeures de rendement et ont un impact considérable sur les changements écologiques et évolutifs dans les populations des plantes. Au cours de ce travail, nous avons mis en évidence que les plantes en situation de carence en Pi induisent la voie de l'acide jasmonique (JA) et augmentent leur défense contre les insectes herbivores. Le mutant phol est déficient dans le transport du phosphate des racines aux feuilles et démontre les symptômes typiques associés à la carence, tels que la forte concentration en anthocyane et une faible croissance foliaire. Ces phénotypes du mutant phol sont significativement atténués lors d'un blocage de la voie de la biosynthèse ou des voies de signalisation du JA. La blessure des feuilles induit une hyper-accumulation de JA chez phol, résultant en une augmentation de la résistance contre l'herbivore généraliste Spodoptera littoralis. Outre Arabidopsis, la carence en Pi induit une résistance accrue aux insectes herbivores aussi chez la tomate et le tabac. Cette découverte révèle que le lien entre la carence en Pi et la résistance aux insectes herbivores via le JA est conservé dans différentes espèces végétales, y compris les plantes de grandes cultures. Nous avons effectué un crible du suppresseur de phol afin d'identifier de nouveaux acteurs impliqués dans l'adaptation de la plante à la carence en Pi. Nous rapportons que le complexe nommé THO RNA TRANSCRIPTION AND EXPORT (THO/TREX) est un élément crucial participant à la réponse des feuilles à la carence en Pi. Les mutations d'au moins trois des membres que composent le complexe THO/TREX, incluant TEX1, HPR1 et 77/06, peuvent supprimer le phénotype de phol. Des expériences de greffes ont montré que la perte de fonction de TEX1, seulement dans la racine, est suffisante pour supprimer le phénotype de la croissance réduite des parties aériennes observé chez le mutant phol, tout en maintenant de faibles teneurs en Pi foliaire. Ceci indique que TEX1 est impliqué dans la signalisation longue distance entre les racines et les parties aériennes. Nous avons identifié un petit facteur de transcription proche de la famille des MYB, RAD LIKE 3 (RL3), comme une cible potentielle en aval du complexe THO / TREX. L'expression du gène RL3 est induite dans le mutant phol mais atténuée dans le double mutant phol-7 texl-4. Exactement comme les plantes mutées d'un des membres du complexe THO/TREX, le mutant rl3 peut supprimer le phénotype foliaire de phol. RL3 est induit au cours d'une carence en Pi et est décrit dans la littérature comme étant potentiellement mobile. Par conséquent, il serait un nouveau candidat potentiellement impliqué dans la réponse longue distance entre les racines et les parties aériennes lors d'un déficit en Pi. Enfin, nous reportons que PHOl et son homologue PHOl: H3 sont impliqués dans la co- régulation de l'homéostasie du Pi et du zinc (Zn). PHOl; H3 est sur-exprimé en réponse au déficit en Zn et, comme PHOl, est exprimé dans les tissus vasculaires des racines et se localise dans l'appareil de Golgi lorsqu'il est exprimé de manière transitoire dans des cellules de tabac. Le mutant phol; h3 accumule plus de Pi par rapport aux plantes sauvages lorsqu'il est cultivé sur un milieu déficient en Zn, mais cette augmentation en Pi est abolie dans le double mutant phol phol; h3. Ces résultats suggèrent qu'en réponse à une carence en Zn, PHOl; H3 limite l'action de PHOl et diminue le transfert du Pi des racines aux parties aériennes.
Resumo:
Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.
Resumo:
PURPOSE: To determine the value of applying finger trap distraction during direct MR arthrography of the wrist to assess intrinsic ligament and triangular fibrocartilage complex (TFCC) tears. MATERIALS AND METHODS: Twenty consecutive patients were prospectively investigated by three-compartment wrist MR arthrography. Imaging was performed with 3-T scanners using a three-dimensional isotropic (0.4 mm) T1-weighted gradient-recalled echo sequence, with and without finger trap distraction (4 kg). In a blind and independent fashion, two musculoskeletal radiologists measured the width of the scapholunate (SL), lunotriquetral (LT) and ulna-TFC (UTFC) joint spaces. They evaluated the amount of contrast medium within these spaces using a four-point scale, and assessed SL, LT and TFCC tears, as well as the disruption of Gilula's carpal arcs. RESULTS: With finger trap distraction, both readers found a significant increase in width of the SL space (mean Δ = +0.1mm, p ≤ 0.040), and noticed more contrast medium therein (p ≤ 0.035). In contrast, the differences in width of the LT (mean Δ = +0.1 mm, p ≥ 0.057) and UTFC (mean Δ = 0mm, p ≥ 0.728) spaces, as well as the amount of contrast material within these spaces were not statistically significant (p = 0.607 and ≥ 0.157, respectively). Both readers detected more SL (Δ = +1, p = 0.157) and LT (Δ = +2, p = 0.223) tears, although statistical significance was not reached, and Gilula's carpal arcs were more frequently disrupted during finger trap distraction (Δ = +5, p = 0.025). CONCLUSION: The application of finger trap distraction during direct wrist MR arthrography may enhance both detection and characterisation of SL and LT ligament tears by widening the SL space and increasing the amount of contrast within the SL and LT joint spaces.
A simple genetic basis for complex social behaviour mediates widespread gene expression differences.
Resumo:
A remarkable social polymorphism is controlled by a single Mendelian factor in the fire ant Solenopsis invicta. A genomic element marked by the gene Gp-9 determines whether workers tolerate one or many fertile queens in their colony. Gp-9 was recently shown to be part of a supergene with two nonrecombining variants, SB and Sb. SB/SB and SB/Sb queens differ in how they initiate new colonies, and in many physiological traits, for example odour and maturation rate. To understand how a single genetic element can affect all these traits, we used a microarray to compare gene expression patterns between SB/SB and SB/Sb queens of three different age classes: 1-day-old unmated queens, 11-day-old unmated queens and mated, fully reproductive queens collected from mature field colonies. The number of genes that were differentially expressed between SB/SB and SB/Sb queens of the same age class was smallest in 1-day-old queens, maximal in 11-day-old queens and intermediate in reproductive queens. Gene ontology analysis showed that SB/SB queens upregulate reproductive genes faster than SB/Sb queens. For all age classes, genes inside the supergene were overrepresented among the differentially expressed genes. Consistent with the hypothesized greater number of transposons in the Sb supergene, 13 transposon genes were upregulated in SB/Sb queens. Viral genes were also upregulated in SB/Sb mature queens, consistent with the known greater parasite load in colonies headed by SB/Sb queens compared with colonies headed by SB/SB queens. Eighteen differentially expressed genes between reproductive queens were involved in chemical signalling. Our results suggest that many genes in the supergene are involved in regulating social organization and queen phenotypes in fire ants.
Resumo:
The limited ability of common variants to account for the genetic contribution to complex disease has prompted searches for rare variants of large effect, to partly explain the 'missing heritability'. Analyses of genome-wide genotyping data have identified genomic structural variants (GSVs) as a source of such rare causal variants. Recent studies have reported multiple GSV loci associated with risk of obesity. We attempted to replicate these associations by similar analysis of two familial-obesity case-control cohorts and a population cohort, and detected GSVs at 11 out of 18 loci, at frequencies similar to those previously reported. Based on their reported frequencies and effect sizes (OR≥25), we had sufficient statistical power to detect the large majority (80%) of genuine associations at these loci. However, only one obesity association was replicated. Deletion of a 220 kb region on chromosome 16p11.2 has a carrier population frequency of 2×10(-4) (95% confidence interval [9.6×10(-5)-3.1×10(-4)]); accounts overall for 0.5% [0.19%-0.82%] of severe childhood obesity cases (P = 3.8×10(-10); odds ratio = 25.0 [9.9-60.6]); and results in a mean body mass index (BMI) increase of 5.8 kg.m(-2) [1.8-10.3] in adults from the general population. We also attempted replication using BMI as a quantitative trait in our population cohort; associations with BMI at or near nominal significance were detected at two further loci near KIF2B and within FOXP2, but these did not survive correction for multiple testing. These findings emphasise several issues of importance when conducting rare GSV association, including the need for careful cohort selection and replication strategy, accurate GSV identification, and appropriate correction for multiple testing and/or control of false discovery rate. Moreover, they highlight the potential difficulty in replicating rare CNV associations across different populations. Nevertheless, we show that such studies are potentially valuable for the identification of variants making an appreciable contribution to complex disease.
Resumo:
The RP protein (RPP) array approach immobilizes minute amounts of cell lysates or tissue protein extracts as distinct microspots on NC-coated slide. Subsequent detection with specific antibodies allows multiplexed quantification of proteins and their modifications at a scale that is beyond what traditional techniques can achieve. Cellular functions are the result of the coordinated action of signaling proteins assembled in macromolecular complexes. These signaling complexes are highly dynamic structures that change their composition with time and space to adapt to cell environment. Their comprehensive analysis requires until now relatively large amounts of cells (>5 x 10(7)) due to their low abundance and breakdown during isolation procedure. In this study, we combined small scale affinity capture of the T-cell receptor (TCR) and RPP arrays to follow TCR signaling complex assembly in human ex vivo isolated CD4 T-cells. Using this strategy, we report specific recruitment of signaling components to the TCR complex upon T-cell activation in as few as 0.5 million of cells. Second- to fourth-order TCR interacting proteins were accurately quantified, making this strategy specially well-suited to the analysis of membrane-associated signaling complexes in limited amounts of cells or tissues, e.g., ex vivo isolated cells or clinical specimens.
Resumo:
Soft tissue sarcomas (STS) with complex genomic profiles (50% of all STS) are predominantly composed of spindle cell/pleomorphic sarcomas, including leiomyosarcoma, myxofibrosarcoma, pleomorphic liposarcoma, pleomorphic rhabdomyosarcoma, malignant peripheral nerve sheath tumor, angiosarcoma, extraskeletal osteosarcoma, and spindle cell/pleomorphic unclassified sarcoma (previously called spindle cell/pleomorphic malignant fibrous histiocytoma). These neoplasms show, characteristically, gains and losses of numerous chromosomes or chromosome regions, as well as amplifications. Many of them share recurrent aberrations (e.g., gain of 5p13-p15) that seem to play a significant role in tumor progression and/or metastatic dissemination. In this paper, we review the cytogenetic, molecular genetic, and clinicopathologic characteristics of the most common STS displaying complex genomic profiles. Features of diagnostic or prognostic relevance will be discussed when needed.
Resumo:
The role of land cover change as a significant component of global change has become increasingly recognized in recent decades. Large databases measuring land cover change, and the data which can potentially be used to explain the observed changes, are also becoming more commonly available. When developing statistical models to investigate observed changes, it is important to be aware that the chosen sampling strategy and modelling techniques can influence results. We present a comparison of three sampling strategies and two forms of grouped logistic regression models (multinomial and ordinal) in the investigation of patterns of successional change after agricultural land abandonment in Switzerland. Results indicated that both ordinal and nominal transitional change occurs in the landscape and that the use of different sampling regimes and modelling techniques as investigative tools yield different results. Synthesis and applications. Our multimodel inference identified successfully a set of consistently selected indicators of land cover change, which can be used to predict further change, including annual average temperature, the number of already overgrown neighbouring areas of land and distance to historically destructive avalanche sites. This allows for more reliable decision making and planning with respect to landscape management. Although both model approaches gave similar results, ordinal regression yielded more parsimonious models that identified the important predictors of land cover change more efficiently. Thus, this approach is favourable where land cover change pattern can be interpreted as an ordinal process. Otherwise, multinomial logistic regression is a viable alternative.
Resumo:
Migmatization of gabbroic rocks at 2-3 kbar has occurred in the metamorphic contact aureole of a mafic pluton in the Fuerteventura Basal Complex (Canary Island;). Migmatites are characterized by a dense network: of closely spaced millimetre-wide leucocratic veins with perfectly preserved igneous textures. They are all relatively enriched in Al, Na I: Sr Ba, Nb, Y and the rare earth elements compared with the unaffected country rock beyond the aureole. Migmatization under such low-pressure conditions war possible because of the unusual tectonic and magmatic contact in which ii occurred. Multiple basic intrusions associated with extrusive volcanic activity created high heat flow in a small area. Alkaline and metasomatized rocks present in the country rock of the intruding pluton were leached by high-temperature fluids during contact metamorphism. These enriched fluids then favoured partial melting of the host gabbroic rocks, and contaminated both the leucosomes and melanosomes. A transpressive tectonic setting at the time of intrusion created shearing along the contact between the intrusion and its host rock. This shearing enhanced circulation of the fluids and allowed segregation of the nea-formed melts from their restite by opening tension veins into which the melts migrated. Depending on the relative timing of melt segregation and recrystallization leucosomes range in composition from a 40-60% mixture of clinopyroxene (+/- amphibole) and plagioclase to almost pure feldspathic veins. Comparable occurrences of gabbros migmatized at low pressure are expected only at a snail scale in localized areas of high heat flow in the presence of fluids, such as in. mid-ocean ridges or ocean-islands.
Resumo:
We used whole-exome sequencing to study three individuals with a distinct condition characterized by short stature, chondrodysplasia with brachydactyly, congenital joint dislocations, cleft palate, and facial dysmorphism. Affected individuals carried homozygous missense mutations in IMPAD1, the gene coding for gPAPP, a Golgi-resident nucleotide phosphatase that hydrolyzes phosphoadenosine phosphate (PAP), the byproduct of sulfotransferase reactions, to AMP. The mutations affected residues in or adjacent to the phosphatase active site and are predicted to impair enzyme activity. A fourth unrelated patient was subsequently found to be homozygous for a premature termination codon in IMPAD1. Impad1 inactivation in mice has previously been shown to produce chondrodysplasia with abnormal joint formation and impaired proteoglycan sulfation. The human chondrodysplasia associated with gPAPP deficiency joins a growing number of skeletoarticular conditions associated with defective synthesis of sulfated proteoglycans, highlighting the importance of proteoglycans in the development of skeletal elements and joints.
Resumo:
Surface- or biosynthetically labeled Lyt-2/3 antigens were isolated from cell lysates by immunoprecipitation and affinity chromatography with a monoclonal antibody. Tryptic digests of the individual subunits of 37,000, 32,000 and 28,000 apparent mol. wts were analysed by reverse-phase high-performance liquid chromatography and by two-dimensional peptide mapping. The results indicate that the 37,000 and 32,000 mol. wt components are structurally very similar whereas the 28,000 mol. wt component appears as a different molecule.