245 resultados para Glucose Intolerance

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin controls glucose homeostasis by regulating glucose use in peripheral tissues, and its own production and secretion in pancreatic beta cells. These responses are largely mediated downstream of the insulin receptor substrates, IRS-1 and IRS-2 (refs 4-8), through distinct signalling pathways. Although a number of effectors of these pathways have been identified, their roles in mediating glucose homeostasis are poorly defined. Here we show that mice deficient for S6 kinase 1, an effector of the phosphatidylinositide-3-OH kinase signalling pathway, are hypoinsulinaemic and glucose intolerant. Whereas insulin resistance is not observed in isolated muscle, such mice exhibit a sharp reduction in glucose-induced insulin secretion and in pancreatic insulin content. This is not due to a lesion in glucose sensing or insulin production, but to a reduction in pancreatic endocrine mass, which is accounted for by a selective decrease in beta-cell size. The observed phenotype closely parallels those of preclinical type 2 diabetes mellitus, in which malnutrition-induced hypoinsulinaemia predisposes individuals to glucose intolerance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins secreted in response to oral glucose ingestion by intestinal L and K cells, respectively. The molecular mechanisms responsible for intestinal cell glucose sensing are unknown but could be related to those described for beta-cells, brain and hepatoportal sensors. We determined the role of GLUT2, GLP-1 or GIP receptors in glucose-induced incretins secretion, in the corresponding knockout mice. GLP-1 secretion was reduced in all mutant mice, while GIP secretion did not require GLUT2. Intestinal GLP-1 content was reduced only in GIP and GLUT2 receptors knockout mice suggesting that this impairment could contribute to the phenotype. Intestinal GIP content was similar in all mice studied. Furthermore, the impaired incretins secretion was associated with a reduced glucose-stimulated insulin secretion and an impaired glucose tolerance in all mice. In conclusion, both incretins secretion depends on mechanisms involving their own receptors and GLP-1 further requires GLUT2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To assess the role of the alpha1b-adrenergic receptor (AR) in glucose homeostasis, we investigated glucose metabolism in knockout mice deficient of this receptor subtype (alpha1b-AR-/-). Mutant mice had normal blood glucose and insulin levels, but elevated leptin concentrations in the fed state. During the transition to fasting, glucose and insulin blood concentrations remained markedly elevated for at least 6 h and returned to control levels after 24 h whereas leptin levels remained high at all times. Hyperinsulinemia in the post-absorptive phase was normalized by atropine or methylatropine indicating an elevated parasympathetic activity on the pancreatic beta cells, which was associated with increased levels of hypothalamic NPY mRNA. Euglycemic clamps at both low and high insulin infusion rates revealed whole body insulin resistance with reduced muscle glycogen synthesis and impaired suppression of endogenous glucose production at the low insulin infusion rate. The liver glycogen stores were 2-fold higher in the fed state in the alpha1b-AR-/- compared with control mice, but were mobilized at the same rate during the fed to fast transition or following glucagon injections. Finally, high fat feeding for one month increased glucose intolerance and body weight in the alpha1b-AR-/-, but not in control mice. Altogether, our results indicate that in the absence of the alpha1b-AR the expression of hypotalamic NPY and the parasympathetic nervous activity are both increased resulting in hyperinsulinemia and insulin resistance as well as favoring obesity and glucose intolerance development during high fat feeding.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate the effect of age and change in body composition on the increase in energy expenditure consecutive to the ingestion of a 75-g glucose load, respiratory exchange measurements were performed on 24 subjects, 12 elderly (mean +/- SEM, 73 +/- 1 yr) and 12 young (25 +/- 1 yr). The body weight was comparable, 62 +/- 2 kg in the elderly group vs 61 +/- 3 in the young, but the body fat content of the elderly group was significantly greater than that of the young (29 +/- 2% vs 19 +/- 2%, p less than 0.001). The elderly group presented a slight glucose intolerance according to the World Health Organization (WHO) criteria, with a 120-min plasma glucose of 149 +/- 9 mg/dl (p less than 0.005 vs young). The postabsorptive resting energy expenditure (REE) was 0.83 +/- 0.03 kcal/min in the elderly group vs 0.98 +/- 0.04 in the young (p less than 0.02); this decrease of 15% was mainly related to the decrease in fat free mass (FFM) in the elderly group, which averaged 14%. The difference was not significant when REE was expressed per kg FFM. The glucose-induced thermogenesis (GIT) expressed as percent of energy content of the load was 6.2 +/- 0.6% in the elderly group and 8.9 +/- 0.9% in the young (p less than 0.05). It is concluded that the glucose-induced thermogenesis is decreased in elderly subjects. However, when expressed per kg FFM, the increment in energy expenditure (EE), in response to the glucose load, is not different in elderly subjects, suggesting that the decrease of thermogenesis may be attributed to the age-related decrease in FFM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

How glucose sensing by the nervous system impacts the regulation of β cell mass and function during postnatal development and throughout adulthood is incompletely understood. Here, we studied mice with inactivation of glucose transporter 2 (Glut2) in the nervous system (NG2KO mice). These mice displayed normal energy homeostasis but developed late-onset glucose intolerance due to reduced insulin secretion, which was precipitated by high-fat diet feeding. The β cell mass of adult NG2KO mice was reduced compared with that of WT mice due to lower β cell proliferation rates in NG2KO mice during the early postnatal period. The difference in proliferation between NG2KO and control islets was abolished by ganglionic blockade or by weaning the mice on a carbohydrate-free diet. In adult NG2KO mice, first-phase insulin secretion was lost, and these glucose-intolerant mice developed impaired glucagon secretion when fed a high-fat diet. Electrophysiological recordings showed reduced parasympathetic nerve activity in the basal state and no stimulation by glucose. Furthermore, sympathetic activity was also insensitive to glucose. Collectively, our data show that GLUT2-dependent control of parasympathetic activity defines a nervous system/endocrine pancreas axis that is critical for β cell mass establishment in the postnatal period and for long-term maintenance of β cell function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate the time course of glucose metabolism in obesity 33 patients (21 to 69 years old; body mass index [BMI], 25.7 to 53.3 kg/m2) with different degrees of glucose intolerance or diabetes who had been studied initially and 6 years later were submitted to the same 100-g oral glucose tolerance test (OGTT) with indirect calorimetry. From a group of 13 obese subjects with normal glucose tolerance (NGT), four developed impaired glucose tolerance (IGT); from a group of nine patients with IGT, three developed non-insulin-dependent diabetes mellitus (NIDDM); five of six obese NIDDM subjects with high insulin response developed NIDDM with low insulin response. Five patients had diabetes with hypoinsulinemia initially. As previously seen in a cross-sectional study, the 3-hour glucose storage measured by continuous indirect calorimetry remained unaltered in patients with IGT, whereas it decreased in NIDDM patients. A further decrease in glucose storage was observed with the lowering of the insulin response in the previously hyperinsulinemic diabetics. These results confirm cross-sectional studies that suggest successive phases in the evolution of obesity to diabetes: A, NGT; B, IGT (the hyperglycemia normalizing the glucose storage over 3 hours); C, diabetes with increased insulin response, where hyperglycemia does not correct the resistance to glucose storage anymore; and D, diabetes with low insulin response, with a low glucose storage and an elevated fasting and postload glycemia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. METHODS: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. RESULTS: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. CONCLUSIONS/INTERPRETATION: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The provision of sufficient basal insulin to normalize fasting plasma glucose levels may reduce cardiovascular events, but such a possibility has not been formally tested. METHODS: We randomly assigned 12,537 people (mean age, 63.5 years) with cardiovascular risk factors plus impaired fasting glucose, impaired glucose tolerance, or type 2 diabetes to receive insulin glargine (with a target fasting blood glucose level of ≤95 mg per deciliter [5.3 mmol per liter]) or standard care and to receive n-3 fatty acids or placebo with the use of a 2-by-2 factorial design. The results of the comparison between insulin glargine and standard care are reported here. The coprimary outcomes were nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes and these events plus revascularization or hospitalization for heart failure. Microvascular outcomes, incident diabetes, hypoglycemia, weight, and cancers were also compared between groups. RESULTS: The median follow-up was 6.2 years (interquartile range, 5.8 to 6.7). Rates of incident cardiovascular outcomes were similar in the insulin-glargine and standard-care groups: 2.94 and 2.85 per 100 person-years, respectively, for the first coprimary outcome (hazard ratio, 1.02; 95% confidence interval [CI], 0.94 to 1.11; P=0.63) and 5.52 and 5.28 per 100 person-years, respectively, for the second coprimary outcome (hazard ratio, 1.04; 95% CI, 0.97 to 1.11; P=0.27). New diabetes was diagnosed approximately 3 months after therapy was stopped among 30% versus 35% of 1456 participants without baseline diabetes (odds ratio, 0.80; 95% CI, 0.64 to 1.00; P=0.05). Rates of severe hypoglycemia were 1.00 versus 0.31 per 100 person-years. Median weight increased by 1.6 kg in the insulin-glargine group and fell by 0.5 kg in the standard-care group. There was no significant difference in cancers (hazard ratio, 1.00; 95% CI, 0.88 to 1.13; P=0.97). CONCLUSIONS: When used to target normal fasting plasma glucose levels for more than 6 years, insulin glargine had a neutral effect on cardiovascular outcomes and cancers. Although it reduced new-onset diabetes, insulin glargine also increased hypoglycemia and modestly increased weight. (Funded by Sanofi; ORIGIN ClinicalTrials.gov number, NCT00069784.).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graft vasculopathy is an accelerated form of coronary artery disease that occurs in transplanted hearts. Despite major advances in immunosuppression, the prevalence of the disease has remained substantially unchanged during the last two decades. According to the 'response to injury' paradigm, graft vasculopathy is the result of a continuous inflammatory response to tissue injury initiated by both alloantigen-dependent and independent stress responses. Experimental evidence suggests that these responses may become self-sustaining, as allograft re-transplantation into the donor strain at a later stage fails to prevent disease progression. Histological evidence of endothelitis and arteritis, in association with intima fibrosis and atherosclerosis, reflects the central role of alloimmunity and inflammation in the development of arterial lesions. Experimental results in gene-targeted mouse models indicate that cellular and humoral immune responses are both involved in the pathogenesis of graft vasculopathy. Circulating antibodies against donor endothelium are found in a significant number of patients, but their pathogenic role is still controversial. Alloantigen-independent factors include donor-transmitted coronary artery disease, surgical trauma, ischaemia-reperfusion injury, viral infections, hyperlipidaemia, hypertension, and glucose intolerance. Recent therapeutic advances include the use of novel immunosuppressive agents such as sirolimus (rapamycin), HMG-CoA reductase inhibitors, calcium channel blockers, and angiotensin converting enzyme inhibitors. Optimal treatment of cardiovascular risk factors remains of paramount importance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dietary obesity is a major factor in the development of type 2 diabetes and is associated with intra-adipose tissue hypoxia and activation of hypoxia-inducible factor 1α (HIF1α). Here we report that, in mice, Hif1α activation in visceral white adipocytes is critical to maintain dietary obesity and associated pathologies, including glucose intolerance, insulin resistance, and cardiomyopathy. This function of Hif1α is linked to its capacity to suppress β-oxidation, in part, through transcriptional repression of sirtuin 2 (Sirt2) NAD(+)-dependent deacetylase. Reduced Sirt2 function directly translates into diminished deacetylation of PPARγ coactivator 1α (Pgc1α) and expression of β-oxidation and mitochondrial genes. Importantly, visceral adipose tissue from human obese subjects is characterized by high levels of HIF1α and low levels of SIRT2. Thus, by negatively regulating the Sirt2-Pgc1α regulatory axis, Hif1α negates adipocyte-intrinsic pathways of fatty acid catabolism, thereby creating a metabolic state supporting the development of obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fragility fractures are recognized complication of diabetes, but yet the underlying mechanisms remain poorly understood. This is particularly pronounced in type 2 diabetes in which the propensity to fall is increased but bone mass is not necessarily low. Thus, whether factors implicated in the development of insulin resistance and diabetes directly impact on the musculoskeletal system remains to be investigated. PPARβ(-/-) mice have reduced metabolic activity and are glucose intolerant. We examined changes in bone and muscle in PPARβ(-/-) mice and investigated both the mechanism behind those changes with age as well as their response to exercise. Compared with their wild type, PPARβ(-/-) mice had an accelerated and parallel decline in both muscle and bone strength with age. These changes were accompanied by increased myostatin expression, low bone formation, and increased resorption. In addition, mesenchymal cells from PPARβ(-/-) had a reduced proliferation capacity and appeared to differentiate into more of an adipogenic phenotype. Concomitantly we observed an increased expression of PPARγ, characteristic of adipocytes. The anabolic responses of muscle and bone to exercise were also diminished in PPARβ(-/-) mice. The periosteal bone formation response to direct bone compression was, however, maintained, indicating that PPARβ controls periosteal bone formation through muscle contraction and/or metabolism. Taken together, these data indicate that PPARβ deficiency leads to glucose intolerance, decreased muscle function, and reduced bone strength. On a molecular level, PPARβ appears to regulate myostatin and PPARγ expression in muscle and bone, thereby providing potential new targets to reverse bone fragility in patients with metabolic disturbances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The prevalence of insulin-dependent diabetes mellitus (IDDM) in cystic fibrosis patients ranges from 2 to 8% and glucose intolerance up to 15%. In recent years, lung transplantation has helped to prolong life expectancy of cystic fibrosis patients and represents 10 to 30% of all indications for lung transplantation. The postoperative need for immunosuppressive therapy using diabetogenic agents has decompensatory effects on glucose regulation and will probably increase the number of insulin-dependent cystic fibrosis patients. We report the case of an insulin-dependent cystic fibrosis patient transplanted with a combined islet-lung allograft. The pre-transplantation C-peptide level was below 0.04 nmol/l and preoperative insulin requirement was some 100 U per day. A sequential bipulmonary lung transplantation was performed and, using the pancreas of the same donor, we isolated and purified the islets of Langerhans by a modified automated method. We obtained 232,200 islets equivalent, which were injected into the liver by portal embolization. The postoperative course was uncomplicated, the insulin requirement decreased to 50% of the preoperative need and the C-peptide value increased to normal values and remained with the normal range during a follow-up period of 15 months. In conclusion, we believe that, besides type I diabetic patients, insulin-dependent cystic fibrosis patients with a negative C-peptide value could also be good candidates for combined islet-lung allotransplantation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The use of n-3 fatty acids may prevent cardiovascular events in patients with recent myocardial infarction or heart failure. Their effects in patients with (or at risk for) type 2 diabetes mellitus are unknown. METHODS: In this double-blind study with a 2-by-2 factorial design, we randomly assigned 12,536 patients who were at high risk for cardiovascular events and had impaired fasting glucose, impaired glucose tolerance, or diabetes to receive a 1-g capsule containing at least 900 mg (90% or more) of ethyl esters of n-3 fatty acids or placebo daily and to receive either insulin glargine or standard care. The primary outcome was death from cardiovascular causes. The results of the comparison between n-3 fatty acids and placebo are reported here. RESULTS: During a median follow up of 6.2 years, the incidence of the primary outcome was not significantly decreased among patients receiving n-3 fatty acids, as compared with those receiving placebo (574 patients [9.1%] vs. 581 patients [9.3%]; hazard ratio, 0.98; 95% confidence interval [CI], 0.87 to 1.10; P=0.72). The use of n-3 fatty acids also had no significant effect on the rates of major vascular events (1034 patients [16.5%] vs. 1017 patients [16.3%]; hazard ratio, 1.01; 95% CI, 0.93 to 1.10; P=0.81), death from any cause (951 [15.1%] vs. 964 [15.4%]; hazard ratio, 0.98; 95% CI, 0.89 to 1.07; P=0.63), or death from arrhythmia (288 [4.6%] vs. 259 [4.1%]; hazard ratio, 1.10; 95% CI, 0.93 to 1.30; P=0.26). Triglyceride levels were reduced by 14.5 mg per deciliter (0.16 mmol per liter) more among patients receiving n-3 fatty acids than among those receiving placebo (P<0.001), without a significant effect on other lipids. Adverse effects were similar in the two groups. CONCLUSIONS: Daily supplementation with 1 g of n-3 fatty acids did not reduce the rate of cardiovascular events in patients at high risk for cardiovascular events. (Funded by Sanofi; ORIGIN ClinicalTrials.gov number, NCT00069784.).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polycystic ovary syndrome is the most common endocrinopathy in women of reproductive age. Insulin resistance is frequently found in affected patients, and probably plays an important physiopathological role. In this paper, we will review the well recognized association between polycystic ovary syndrome and insulin resistance, and discuss the increased risk of glucose intolerance, type 2 diabetes and metabolic syndrome carried by patients diagnosed with this syndrome. We will also suggest a practical strategy for the screening and follow up of the various metabolic complications associated with polycystic ovary syndrome, in light of the rare existing recommendations of the current literature.