4 resultados para Gephyrin, Synapse
em Université de Lausanne, Switzerland
Resumo:
It is now widely accepted that adult neurogenesis plays a fundamental role in hippocampal function. Neurons born in the adult dentate gyrus of the hippocampus undergo a series of events before they fully integrate in the network and eventually become undistinguishable from neurons born during embryogenesis. Adult hippocampal neurogenesis is strongly regulated by neuronal activity and neurotransmitters, and the synaptic integration of adult-born neurons occurs in discrete steps, some of which are very different from perinatal synaptogenesis. Here, we review the current knowledge on the development of the synaptic input and output of neurons born in the adult hippocampus, from the stem/progenitor cell to the fully mature neuron. We also provide insight on the regulation of adult neurogenesis by some neurotransmitters and discuss some specificities of the integration of new neurons in an adult environment. The understanding of the mechanisms regulating the synaptic integration of adult-born neurons is not only crucial for our understanding of brain plasticity, but also provides a framework for the manipulation and monitoring of endogenous adult neurogenesis as well as grafted cells, for potential therapeutic applications.
Resumo:
Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.
Resumo:
With the aid of the cobalt labelling technique, frog spinal cord motor neuron dendrites of the subpial dendritic plexus have been identified in serial electron micrographs. Computer reconstructions of various lengths (2.5-9.8 micron) of dendritic segments showed the contours of these dendrites to be highly irregular, and to present many thorn-like projections 0.4-1.8 micron long. Number, size and distribution of synaptic contacts were also determined. Almost half of the synapses occurred at the origins of the thorns and these synapses had the largest contact areas. Only 8 out of 54 synapses analysed were found on thorns and these were the smallest. For the total length of reconstructed dendrites there was, on average, one synapse per 1.2 micron, while 4.4% of the total dendritic surface was covered with synaptic contacts. The functional significance of these distal dendrites and their capacity to influence the soma membrane potential is discussed.
Resumo:
The Fragile X mental retardation protein (FMRP) regulates neuronal RNA metabolism, and its absence or mutations leads to the Fragile X syndrome (FXS). The β-amyloid precursor protein (APP) is involved in Alzheimer's disease, plays a role in synapse formation, and is upregulated in intellectual disabilities. Here, we show that during mouse synaptogenesis and in human FXS fibroblasts, a dual dysregulation of APP and the α-secretase ADAM10 leads to the production of an excess of soluble APPα (sAPPα). In FXS, sAPPα signals through the metabotropic receptor that, activating the MAP kinase pathway, leads to synaptic and behavioral deficits. Modulation of ADAM10 activity in FXS reduces sAPPα levels, restoring translational control, synaptic morphology, and behavioral plasticity. Thus, proper control of ADAM10-mediated APP processing during a specific developmental postnatal stage is crucial for healthy spine formation and function(s). Downregulation of ADAM10 activity at synapses may be an effective strategy for ameliorating FXS phenotypes.