161 resultados para Geological processes
em Université de Lausanne, Switzerland
3D seismic facies characterization and geological patterns recognition (Australian North West Shelf)
Resumo:
EXECUTIVE SUMMARY This PhD research, funded by the Swiss Sciences Foundation, is principally devoted to enhance the recognition, the visualisation and the characterization of geobodies through innovative 3D seismic approaches. A series of case studies from the Australian North West Shelf ensures the development of reproducible integrated 3D workflows and gives new insight into local and regional stratigraphic as well as structural issues. This project was initiated in year 2000 at the Geology and Palaeontology Institute of the University of Lausanne (Switzerland). Several collaborations ensured the improvement of technical approaches as well as the assessment of geological models. - Investigations into the Timor Sea structural style were carried out at the Tectonics Special Research Centre of the University of Western Australia and in collaboration with Woodside Energy in Perth. - Seismic analysis and attributes classification approach were initiated with Schlumberger Oilfield Australia in Perth; assessments and enhancements of the integrated seismic approaches benefited from collaborations with scientists from Schlumberger Stavanger Research (Norway). Adapting and refining from "linear" exploration techniques, a conceptual "helical" 3D seismic approach has been developed. In order to investigate specific geological issues this approach, integrating seismic attributes and visualisation tools, has been refined and adjusted leading to the development of two specific workflows: - A stratigraphic workflow focused on the recognition of geobodies and the characterization of depositional systems. Additionally, it can support the modelling of the subsidence and incidentally the constraint of the hydrocarbon maturity of a given area. - A structural workflow used to quickly and accurately define major and secondary fault systems. The integration of the 3D structural interpretation results ensures the analysis of the fault networks kinematics which can affect hydrocarbon trapping mechanisms. The application of these integrated workflows brings new insight into two complex settings on the Australian North West Shelf and ensures the definition of astonishing stratigraphic and structural outcomes. The stratigraphic workflow ensures the 3D characterization of the Late Palaeozoic glacial depositional system on the Mermaid Nose (Dampier Subbasin, Northern Carnarvon Basin) that presents similarities with the glacial facies along the Neotethys margin up to Oman (chapter 3.1). A subsidence model reveals the Phanerozoic geodynamic evolution of this area (chapter 3.2) and emphasizes two distinct mode of regional extension for the Palaeozoic (Neotethys opening) and Mesozoic (abyssal plains opening). The structural workflow is used for the definition of the structural evolution of the Laminaria High area (Bonaparte Basin). Following a regional structural characterization of the Timor Sea (chapter 4.1), a thorough analysis of the Mesozoic fault architecture reveals a local rotation of the stress field and the development of reverse structures (flower structures) in extensional setting, that form potential hydrocarbon traps (chapter 4.2). The definition of the complex Neogene structural architecture associated with the fault kinematic analysis and a plate flexure model (chapter 4.3) suggest that the Miocene to Pleistocene reactivation phases recorded at the Laminaria High most probably result from the oblique normal reactivation of the underlying Mesozoic fault planes. This episode is associated with the deformation of the subducting Australian plate. Based on these results three papers were published in international journals and two additional publications will be submitted. Additionally this research led to several communications in international conferences. Although the different workflows presented in this research have been primarily developed and used for the analysis of specific stratigraphic and structural geobodies on the Australian North West Shelf, similar integrated 3D seismic approaches will have applications to hydrocarbon exploration and production phases; for instance increasing the recognition of potential source rocks, secondary migration pathways, additional traps or reservoir breaching mechanisms. The new elements brought by this research further highlight that 3D seismic data contains a tremendous amount of hidden geological information waiting to be revealed and that will undoubtedly bring new insight into depositional systems, structural evolution and geohistory of the areas reputed being explored and constrained and other yet to be constrained. The further development of 3D texture attributes highlighting specific features of the seismic signal, the integration of quantitative analysis for stratigraphic and structural processes, the automation of the interpretation workflow as well as the formal definition of "seismo-morphologic" characteristics of a wide range of geobodies from various environments would represent challenging examples of continuation of this present research. The 21st century will most probably represent a transition period between fossil and other alternative energies. The next generation of seismic interpreters prospecting for hydrocarbon will undoubtedly face new challenges mostly due to the shortage of obvious and easy targets. They will probably have to keep on integrating techniques and geological processes in order to further capitalise the seismic data for new potentials definition. Imagination and creativity will most certainly be among the most important quality required from such geoscientists.
Resumo:
Cette thèse cible l'étude de la structure thermique de la croûte supérieure (<10km) dans les arcs magmatiques continentaux, et son influence sur l'enregistrement thermochronologique de leur exhumation et de leur évolution topographique. Nous portons notre regard sur deux chaînes de montagne appartenant aux Cordillères Américaines : Les Cascades Nord (USA) et la zone de faille Motagua (Guatemala). L'approche utilisée est axée sur la thermochronologie (U-Th-Sm)/He sur apatite et zircon, couplée avec la modélisation numérique de la structure thermique de la croûte. Nous mettons en évidence la variabilité à la fois spatiale et temporelle du gradient géothermique, et attirons l'attention du lecteur sur l'importance de prendre en compte la multitude des processus géologiques perturbant la structure thermique dans les chaînes de type cordillère, c'est à dire formées lors de la subduction océanique sous un continent.Une nouvelle approche est ainsi développée pour étudier et contraindre la perturbation thermique autour des chambres magmatiques. Deux profiles âge-elevation (U-Th-Sm)/He sur apatite et zircon, ont été collectées 7 km au sud du batholithe de Chilliwack, Cascades Nord. Les résultats montrent une variabilité spatiale et temporelle du gradient géothermique lors de l'emplacement magmatique qui peut être contrainte et séparé de l'exhumation. Durant l'emplacement de l'intrusion, la perturbation thermique y atteint un état d'équilibre (-80-100 °C/km) qui est fonction du flux de magma et de ia distance à la source du magma, puis rejoint 40 °C/km à la fin du processus d'emplacement magmatique.Quelques nouvelles données (U-Th)/He, replacées dans une compilation des données existantes dans les Cascades Nord, indiquent une vitesse d'exhumation constante (-100 m/Ma) dans le temps et l'espace entre 35 Ma et 2 Ma, associée à un soulèvement uniforme de la chaîne contrôlé par l'emplacement de magma dans la croûte durant toute l'activité de l'arc. Par contre, après ~2 Ma, le versant humide de la chaîne est affecté par une accélération des taux d'exhumation, jusqu'à 3 km de croûte y sont érodés. Les glaciations ont un triple effet sur l'érosion de cette chaîne: (1) augmentation des vitesses d'érosion, d'exhumation et de soulèvement la où les précipitations sont suffisantes, (2) limitation de l'altitude contrôlé par la position de Γ Ε LA, (3) élargissement du versant humide et contraction du versant aride de la chaîne.Les modifications des réseaux de drainage sont des processus de surface souvent sous-estimés au profil d'événements climatiques ou tectoniques. Nous proposons une nouvelle approche couplant une analyse géomorphologique, des données thermochronologiques de basse température ((U-Th-Sm)/He sur apatite et zircon), et l'utilisation de modélisation numérique thermo-cinématique pour les mettre en évidence et les dater; nous testons cette approche sur la gorge de la Skagit river dans les North Cascades.De nouvelles données (U-Th)/He sur zircons, complétant les données existantes, montrent que le déplacement horizontal le long de la faille transformante continentale Motagua, la limite des plaques Caraïbe/Amérique du Nord, a juxtaposé un bloc froid, le bloc Maya (s.s.), contre un bloque chaud, le bloc Chortis (s.s.) originellement en position d'arc. En plus de donner des gammes d'âges thermochronologiques très différents des deux côtés de la faille, le déplacement horizontal rapide (~2 cm/a) a produit un fort échange thermique latéral, résultant en un réchauffement du côté froid et un refroidissement du côté chaud de la zone de faille de Motagua.Enfin des données (U-Th-Sm)/He sur apatite témoignent d'un refroidissement Oligocène enregistré uniquement dans la croûte supérieure de la bordure nord de la zone de faille Motagua. Nous tenterons ultérieurement de reproduire ce découplage vertical de la structure thermique par la modélisation de la formation d'un bassin transtensif et de circulation de fluides le long de la faille de Motagua. - This thesis focuses on the influence of the dynamic thermal structure of the upper crust (<10km) on the thermochronologic record of the exhumational and topographic history of magmatic continental arcs. Two mountain belts from the American Cordillera are studied: the North Cascades (USA) and the Motagua fault zone (Guatemala). I use a combined approach coupling apatite and zircon (U-Th-Sm}/He thermochronology and thermo- kinematic numerical modelling. This study highlights the temporal and spatial variability of the geothermal gradient and the importance to take into account the different geological processes that perturb the thermal structure of Cordilleran-type mountain belts (i.e. mountain belts related to oceanic subduction underneath a continent}.We integrate apatite and zircon (U-Th)/He data with numerical thermo-kinematic models to study the relative effects of magmatic and surface processes on the thermal evolution of the crust and cooling patterns in the Cenozoic North Cascades arc (Washington State, USA). Two age-elevation profiles that are located 7 km south of the well-studied Chiliiwack intrusions shows that spatial and temporal variability in geothermal gradients linked to magma emplacement can be contrained and separated from exhumation processes. During Chiliiwack batholith emplacement at -35-20 Ma, the geothermal gradient of the country rocks increased to a very high steady-state value (80-100°C/km), which is likely a function of magma flux and the distance from the magma source area. Including temporally varying geothermal gradients in the analysis allows quantifying the thermal perturbation around magmatic intrusions and retrieving a relatively simple denudation history from the data.The synthesis of new and previously published (U-Th)/He data reveals that denudation of the Northern Cascades is spatially and temporally constant at -100 m/Ma between ~32 and ~2 Ma, which likely reflects uplift due to magmatic crustal thickening since the initiation of the Cenozoic stage of the continental magmatic arc. In contrast, the humid flank of the North Cascades is affected by a ten-fold acceleration in exhumation rate at ~2 Ma, which we interpret as forced by the initiation of glaciations; around 3 km of crust have been eroded since that time. Glaciations have three distinct effects on the dynamics of this mountain range: (1) they increase erosion, exhumation and uplift rates where precipitation rates are sufficient to drive efficient glacial erosion; (2) they efficiently limit the elevation of the range; (3) they lead to widening of the humid flank and contraction of the arid flank of the belt.Drainage reorganizations constitute an important agent of landscape evolution that is often underestimated to the benefit of tectonic or climatic events. We propose a new method that integrates geomorphology, low-temperature thermochronometry (apatite and zircon {U-Th-Sm)/He), and 3D numerical thermal-kinematic modelling to detect and date drainage instability producing recent gorge incision, and apply this approach to the Skagit River Gorge, North Cascades.Two zircon (U-Th)/He age-elevation profiles sampled on both sides of the Motagua Fault Zone (MFZ), the boundary between the North American and the Caribbean plates, combined with published thermochronological data show that strike-slip displacement has juxtaposed the cold Maya block (s.s.) against the hot, arc derived, Chortis block (s.s ), producing different age patterns on both sides of the fault and short-wavelength lateral thermal exchange, resulting in recent heating of the cool side and cooling of the hot side of the MFZ.Finally, an apatite (U-Th-Sm)/He age-elevation profile records rapid cooling at -35 Ma localized only in the upper crust along the northern side of the Motagua fault zone. We will try to reproduce these data by modeling the thermal perturbation resulting from the formation of a transtensional basin and of fluid flow activity along a crustal- scale strike-slip fault.
Resumo:
The relationships between stratigraphic and tectonic setting, recharge processes and underground drainage of the glacierised karst aquifer system `Tsanfleuron-Sanetsch' in the Swiss Alps have been studied by means of various methods, particularly tracer tests (19 injections). The area belongs to the Helvetic nappes and consists of Jurassic to Palaeogene sedimentary rocks. Strata are folded and form a regional anticlinorium. Cretaceous Urgonian limestone constitutes the main karst aquifer, overlain by a retreating glacier in its upper part. Polished limestone surfaces are exposed between the glacier front and the end moraine of 1855/1860 (Little Ice Age); typical alpine karrenfields can be observed further below. Results show that (1) large parts of the area are drained by the Glarey spring, which is used as a drinking water source, while marginal parts belong to the catchments of other springs; (2) groundwater flow towards the Glarey spring occurs in the main aquifer, parallel to stratification, while flow towards another spring crosses the entire stratigraphic sequence, consisting of about 800 m of marl and limestone, along deep faults that were probably enlarged by mass movements; (3) the variability of glacial meltwater production influences the shape of the tracer breakthrough curves and, consequently, flow and transport in the aquifer.
Resumo:
Characterizing the geological features and structures in three dimensions over inaccessible rock cliffs is needed to assess natural hazards such as rockfalls and rockslides and also to perform investigations aimed at mapping geological contacts and building stratigraphy and fold models. Indeed, the detailed 3D data, such as LiDAR point clouds, allow to study accurately the hazard processes and the structure of geologic features, in particular in vertical and overhanging rock slopes. Thus, 3D geological models have a great potential of being applied to a wide range of geological investigations both in research and applied geology projects, such as mines, tunnels and reservoirs. Recent development of ground-based remote sensing techniques (LiDAR, photogrammetry and multispectral / hyperspectral images) are revolutionizing the acquisition of morphological and geological information. As a consequence, there is a great potential for improving the modeling of geological bodies as well as failure mechanisms and stability conditions by integrating detailed remote data. During the past ten years several large rockfall events occurred along important transportation corridors where millions of people travel every year (Switzerland: Gotthard motorway and railway; Canada: Sea to sky highway between Vancouver and Whistler). These events show that there is still a lack of knowledge concerning the detection of potential rockfalls, making mountain residential settlements and roads highly risky. It is necessary to understand the main factors that destabilize rocky outcrops even if inventories are lacking and if no clear morphological evidences of rockfall activity are observed. In order to increase the possibilities of forecasting potential future landslides, it is crucial to understand the evolution of rock slope stability. Defining the areas theoretically most prone to rockfalls can be particularly useful to simulate trajectory profiles and to generate hazard maps, which are the basis for land use planning in mountainous regions. The most important questions to address in order to assess rockfall hazard are: Where are the most probable sources for future rockfalls located? What are the frequencies of occurrence of these rockfalls? I characterized the fracturing patterns in the field and with LiDAR point clouds. Afterwards, I developed a model to compute the failure mechanisms on terrestrial point clouds in order to assess the susceptibility to rockfalls at the cliff scale. Similar procedures were already available to evaluate the susceptibility to rockfalls based on aerial digital elevation models. This new model gives the possibility to detect the most susceptible rockfall sources with unprecented detail in the vertical and overhanging areas. The results of the computation of the most probable rockfall source areas in granitic cliffs of Yosemite Valley and Mont-Blanc massif were then compared to the inventoried rockfall events to validate the calculation methods. Yosemite Valley was chosen as a test area because it has a particularly strong rockfall activity (about one rockfall every week) which leads to a high rockfall hazard. The west face of the Dru was also chosen for the relevant rockfall activity and especially because it was affected by some of the largest rockfalls that occurred in the Alps during the last 10 years. Moreover, both areas were suitable because of their huge vertical and overhanging cliffs that are difficult to study with classical methods. Limit equilibrium models have been applied to several case studies to evaluate the effects of different parameters on the stability of rockslope areas. The impact of the degradation of rockbridges on the stability of large compartments in the west face of the Dru was assessed using finite element modeling. In particular I conducted a back-analysis of the large rockfall event of 2005 (265'000 m3) by integrating field observations of joint conditions, characteristics of fracturing pattern and results of geomechanical tests on the intact rock. These analyses improved our understanding of the factors that influence the stability of rock compartments and were used to define the most probable future rockfall volumes at the Dru. Terrestrial laser scanning point clouds were also successfully employed to perform geological mapping in 3D, using the intensity of the backscattered signal. Another technique to obtain vertical geological maps is combining triangulated TLS mesh with 2D geological maps. At El Capitan (Yosemite Valley) we built a georeferenced vertical map of the main plutonio rocks that was used to investigate the reasons for preferential rockwall retreat rate. Additional efforts to characterize the erosion rate were made at Monte Generoso (Ticino, southern Switzerland) where I attempted to improve the estimation of long term erosion by taking into account also the volumes of the unstable rock compartments. Eventually, the following points summarize the main out puts of my research: The new model to compute the failure mechanisms and the rockfall susceptibility with 3D point clouds allows to define accurately the most probable rockfall source areas at the cliff scale. The analysis of the rockbridges at the Dru shows the potential of integrating detailed measurements of the fractures in geomechanical models of rockmass stability. The correction of the LiDAR intensity signal gives the possibility to classify a point cloud according to the rock type and then use this information to model complex geologic structures. The integration of these results, on rockmass fracturing and composition, with existing methods can improve rockfall hazard assessments and enhance the interpretation of the evolution of steep rockslopes. -- La caractérisation de la géologie en 3D pour des parois rocheuses inaccessibles est une étape nécessaire pour évaluer les dangers naturels tels que chutes de blocs et glissements rocheux, mais aussi pour réaliser des modèles stratigraphiques ou de structures plissées. Les modèles géologiques 3D ont un grand potentiel pour être appliqués dans une vaste gamme de travaux géologiques dans le domaine de la recherche, mais aussi dans des projets appliqués comme les mines, les tunnels ou les réservoirs. Les développements récents des outils de télédétection terrestre (LiDAR, photogrammétrie et imagerie multispectrale / hyperspectrale) sont en train de révolutionner l'acquisition d'informations géomorphologiques et géologiques. Par conséquence, il y a un grand potentiel d'amélioration pour la modélisation d'objets géologiques, ainsi que des mécanismes de rupture et des conditions de stabilité, en intégrant des données détaillées acquises à distance. Pour augmenter les possibilités de prévoir les éboulements futurs, il est fondamental de comprendre l'évolution actuelle de la stabilité des parois rocheuses. Définir les zones qui sont théoriquement plus propices aux chutes de blocs peut être très utile pour simuler les trajectoires de propagation des blocs et pour réaliser des cartes de danger, qui constituent la base de l'aménagement du territoire dans les régions de montagne. Les questions plus importantes à résoudre pour estimer le danger de chutes de blocs sont : Où se situent les sources plus probables pour les chutes de blocs et éboulement futurs ? Avec quelle fréquence vont se produire ces événements ? Donc, j'ai caractérisé les réseaux de fractures sur le terrain et avec des nuages de points LiDAR. Ensuite, j'ai développé un modèle pour calculer les mécanismes de rupture directement sur les nuages de points pour pouvoir évaluer la susceptibilité au déclenchement de chutes de blocs à l'échelle de la paroi. Les zones sources de chutes de blocs les plus probables dans les parois granitiques de la vallée de Yosemite et du massif du Mont-Blanc ont été calculées et ensuite comparés aux inventaires des événements pour vérifier les méthodes. Des modèles d'équilibre limite ont été appliqués à plusieurs cas d'études pour évaluer les effets de différents paramètres sur la stabilité des parois. L'impact de la dégradation des ponts rocheux sur la stabilité de grands compartiments de roche dans la paroi ouest du Petit Dru a été évalué en utilisant la modélisation par éléments finis. En particulier j'ai analysé le grand éboulement de 2005 (265'000 m3), qui a emporté l'entier du pilier sud-ouest. Dans le modèle j'ai intégré des observations des conditions des joints, les caractéristiques du réseau de fractures et les résultats de tests géoméchaniques sur la roche intacte. Ces analyses ont amélioré l'estimation des paramètres qui influencent la stabilité des compartiments rocheux et ont servi pour définir des volumes probables pour des éboulements futurs. Les nuages de points obtenus avec le scanner laser terrestre ont été utilisés avec succès aussi pour produire des cartes géologiques en 3D, en utilisant l'intensité du signal réfléchi. Une autre technique pour obtenir des cartes géologiques des zones verticales consiste à combiner un maillage LiDAR avec une carte géologique en 2D. A El Capitan (Yosemite Valley) nous avons pu géoréferencer une carte verticale des principales roches plutoniques que j'ai utilisé ensuite pour étudier les raisons d'une érosion préférentielle de certaines zones de la paroi. D'autres efforts pour quantifier le taux d'érosion ont été effectués au Monte Generoso (Ticino, Suisse) où j'ai essayé d'améliorer l'estimation de l'érosion au long terme en prenant en compte les volumes des compartiments rocheux instables. L'intégration de ces résultats, sur la fracturation et la composition de l'amas rocheux, avec les méthodes existantes permet d'améliorer la prise en compte de l'aléa chute de pierres et éboulements et augmente les possibilités d'interprétation de l'évolution des parois rocheuses.
Resumo:
Samples of volcanic rocks from Alboran Island, the Alboran Sea floor and from the Gourougou volcanic centre in northern Morocco have been analyzed for major and trace elements and Sr-Nd isotopes to test current theories on the tectonic geodynamic evolution of the Alboran Sea. The Alboran Island samples are low-K tholeiitic basaltic andesites whose depleted contents of HFS elements (similar to0.5xN-MORB), especially Nb (similar to0.2xN-MORB), show marked geochemical parallels with volcanics from immature intra-oceanic arcs and back-arc basins. Several of the submarine samples have similar compositions, one showing low-Ca boninite affinity. Nd-143/Nd-144 ratios fall in the same range as many island-arc and back-arc basin samples, whereas Sr-87/Sr-86 ratios (on leached samples) are somewhat more radiogenic. Our data point to active subduction taking place beneath the Alboran region in Miocene times, and imply the presence of an associated back-arc spreading centre. Our sea floor suite includes a few more evolved dacite and rhyolite samples with (Sr-87/Sr-86)(0) up to 0.717 that probably represent varying degrees of crustal melting. The shoshonite and high-K basaltic andesite lavas from Gourougou have comparable normalized incompatible-element enrichment diagrams and Ce/Y ratios to shoshonitic volcanics from oceanic island arcs, though they have less pronounced Nb deficits. They are much less LIL- and LREE-enriched than continental arc analogues and post-collisional shoshonites from Tibet. The magmas probably originated by melting in subcontinental lithospheric mantle that had experienced negligible subduction input. Sr-Nd isotope compositions point to significant crustal contamination which appears to account for the small Nb anomalies. The unmistakable supra-subduction zone (SSZ) signature shown by our Alboran basalts and basaltic andesite samples refutes geodynamic models that attribute all Neogene volcanism in the Alboran domain to decompression melting of upwelling asthenosphere arising from convective thinning of over-thickened lithosphere. Our data support recent models in which subsidence is caused by westward rollback of an eastward-dipping subduction zone beneath the westemmost Mediterranean. Moreover, severance of the lithosphere at the edges of the rolling-back slab provides opportunities for locally melting lithospheric mantle, providing a possible explanation for the shoshonitic volcanism seen in northern Morocco and more sporadically in SE Spain. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Mont Collon mafic complex is one of the best preserved examples of the Early Permian magmatism in the Central Alps, related to the intra-continental collapse of the Variscan belt. It mostly consists (> 95 vol.%) of ol+hy-nonnative plagioclase-wehrlites, olivine- and cpx-gabbros with cumulitic structures, crosscut by acid dikes. Pegmatitic gabbros, troctolites and anorthosites outcrop locally. A well-preserved cumulative, sequence is exposed in the Dents de Bertol area (center of intrusion). PT-calculations indicate that this layered magma chamber emplaced at mid-crustal levels at about 0.5 GPa and 1100 degrees C. The Mont Collon cumulitic rocks record little magmatic differentiation, as illustrated by the restricted range of clinopyroxene mg-number (Mg#(cpx)=83-89). Whole-rock incompatible trace-element contents (e.g. Nb, Zr, Ba) vary largely and without correlation with major-element composition. These features are characteristic of an in-situ crystallization process with variable amounts of interstitial liquid L trapped between the cumulus mineral phases. LA-ICPMS measurements show that trace-element distribution in the latter is homogeneous, pointing to subsolidus re-equilibration between crystals and interstitial melts. A quantitative modeling based on Langmuir's in-situ crystallization equation successfully duplicated the REE concentrations in cumulitic minerals of all rock facies of the intrusion. The calculated amounts of interstitial liquid L vary between 0 and 35% for degrees of differentiation F of 0 to 20%, relative to the least evolved facies of the intrusion. L values are well correlated with the modal proportions of interstitial amphibole and whole-rock incompatible trace-element concentrations (e.g. Zr, Nb) of the tested samples. However, the in-situ crystallization model reaches its limitations with rock containing high modal content of REE-bearing minerals (i.e. zircon), such as pegmatitic gabbros. Dikes of anorthositic composition, locally crosscutting the layered lithologies, evidence that the Mont Collon rocks evolved in open system with mixing of intercumulus liquids of different origins and possibly contrasting compositions. The proposed model is not able to resolve these complex open systems, but migrating liquids could be partly responsible for the observed dispersion of points in some correlation diagrams. Absence of significant differentiation with recurrent lithologies in the cumulitic pile of Dents de Bertol points to an efficiently convective magma chamber, with possible periodic replenishment, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Geographical isolation and polyploidization are central concepts in plant evolution. The hierarchical organization of archipelagos in this study provides a framework for testing the evolutionary consequences for polyploid taxa and populations occurring in isolation. Using amplified fragment length polymorphism and simple sequence repeat markers, we determined the genetic diversity and differentiation patterns at three levels of geographical isolation in Olea europaea: mainland-archipelagos, islands within an archipelago, and populations within an island. At the subspecies scale, the hexaploid ssp. maroccana (southwest Morocco) exhibited higher genetic diversity than the insular counterparts. In contrast, the tetraploid ssp. cerasiformis (Madeira) displayed values similar to those obtained for the diploid ssp. guanchica (Canary Islands). Geographical isolation was associated with a high genetic differentiation at this scale. In the Canarian archipelago, the stepping-stone model of differentiation suggested in a previous study was partially supported. Within the western lineage, an east-to-west differentiation pattern was confirmed. Conversely, the easternmost populations were more related to the mainland ssp. europaea than to the western guanchica lineage. Genetic diversity across the Canarian archipelago was significantly correlated with the date of the last volcanic activity in the area/island where each population occurs. At the island scale, this pattern was not confirmed in older islands (Tenerife and Madeira), where populations were genetically homogeneous. In contrast, founder effects resulted in low genetic diversity and marked genetic differentiation among populations of the youngest island, La Palma.
Resumo:
When speech is degraded, word report is higher for semantically coherent sentences (e.g., her new skirt was made of denim) than for anomalous sentences (e.g., her good slope was done in carrot). Such increased intelligibility is often described as resulting from "top-down" processes, reflecting an assumption that higher-level (semantic) neural processes support lower-level (perceptual) mechanisms. We used time-resolved sparse fMRI to test for top-down neural mechanisms, measuring activity while participants heard coherent and anomalous sentences presented in speech envelope/spectrum noise at varying signal-to-noise ratios (SNR). The timing of BOLD responses to more intelligible speech provides evidence of hierarchical organization, with earlier responses in peri-auditory regions of the posterior superior temporal gyrus than in more distant temporal and frontal regions. Despite Sentence content × SNR interactions in the superior temporal gyrus, prefrontal regions respond after auditory/perceptual regions. Although we cannot rule out top-down effects, this pattern is more compatible with a purely feedforward or bottom-up account, in which the results of lower-level perceptual processing are passed to inferior frontal regions. Behavioral and neural evidence that sentence content influences perception of degraded speech does not necessarily imply "top-down" neural processes.
Resumo:
The hydrogen and oxygen isotopes of water and the carbon isotope composition of dissolved inorganic carbon (DIC) from different aquifers at an industrial site, highly contaminated by organic pollutants representing residues of the former gas production, have been used as natural tracers to characterize the hydrologic system. On the basis of their stable isotope compositions as well as the seasonal variations, different groups of waters (precipitation, surface waters, groundwaters and mineral waters) as well as seasonably variable processes of mixing between these waters can clearly be distinguished. In addition, reservoir effects and infiltration rates can be estimated. In the northern part of the site an influence of uprising mineral waters within the Quaternary aquifers, presumably along a fault zone, can be recognized. Marginal infiltration from the Neckar River in the cast and surface water infiltration adjacent to a steep hill on the western edge of the site with an infiltration rate of about one month can also be resolved through the seasonal variation. Quaternary aquifers closer to the centre of the site show no seasonal variations, except for one borehole close to a former mill channel and another borehole adjacent to a rain water channel. Distinct carbon isotope compositions and concentrations of DIC for these different groups of waters reflect variable influence of different components of the natural carbon cycle: dissolution of marine carbonates in the mineral waters, biogenic, soil-derived CO2 in ground- and surface waters, as well as additional influence of atmospheric CO2 for the surface waters. Many Quaternary aquifer waters have, however, distinctly lower delta(13)C(DIC) values and higher DIC concentrations compared to those expected for natural waters. Given the location of contaminated groundwaters at this site but also in the industrially well-developed valley outside of this site, the most likely source for the low C-13(DIC) values is a biodegradation of anthropogenic organic substances, in particular the tar oils at the site.
Resumo:
PECUBE is a three-dimensional thermal-kinematic code capable of solving the heat production-diffusion-advection equation under a temporally varying surface boundary condition. It was initially developed to assess the effects of time-varying surface topography (relief) on low-temperature thermochronological datasets. Thermochronometric ages are predicted by tracking the time-temperature histories of rock-particles ending up at the surface and by combining these with various age-prediction models. In the decade since its inception, the PECUBE code has been under continuous development as its use became wider and addressed different tectonic-geomorphic problems. This paper describes several major recent improvements in the code, including its integration with an inverse-modeling package based on the Neighborhood Algorithm, the incorporation of fault-controlled kinematics, several different ways to address topographic and drainage change through time, the ability to predict subsurface (tunnel or borehole) data, prediction of detrital thermochronology data and a method to compare these with observations, and the coupling with landscape-evolution (or surface-process) models. Each new development is described together with one or several applications, so that the reader and potential user can clearly assess and make use of the capabilities of PECUBE. We end with describing some developments that are currently underway or should take place in the foreseeable future. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Detection and discrimination of visuospatial input involve at least extracting, selecting and encoding relevant information and decision-making processes allowing selecting a response. These two operations are altered, respectively, by attentional mechanisms that change discrimination capacities, and by beliefs concerning the likelihood of uncertain events. Information processing is tuned by the attentional level that acts like a filter on perception, while decision-making processes are weighed by subjective probability of risk. In addition, it has been shown that anxiety could affect the detection of unexpected events through the modification of the level of arousal. Consequently, purpose of this study concerns whether and how decision-making and brain dynamics are affected by anxiety. To investigate these questions, the performance of women with either a high (12) or a low (12) STAI-T (State-Trait Anxiety Inventory, Spielberger, 1983) was examined in a decision-making visuospatial task where subjects have to recognize a target visual pattern from non-target patterns. The target pattern was a schematic image of furniture arranged in such a way as to give the impression of a living room. Non-target patterns were created by either the compression or the dilatation of the distances between objects. Target and non-target patterns were always presented in the same configuration. Preliminary behavioral results show no group difference in reaction time. In addition, visuo-spatial abilities were analyzed trough the signal detection theory for quantifying perceptual decisions in the presence of uncertainty (Green and Swets, 1966). This theory treats detection of a stimulus as a decision-making process determined by the nature of the stimulus and cognitive factors. Astonishingly, no difference in d' (corresponding to the distance between means of the distributions) and c (corresponds to the likelihood ratio) indexes was observed. Comparison of Event-related potentials (ERP) reveals that brain dynamics differ according to anxiety. It shows differences in component latencies, particularly a delay in anxious subjects over posterior electrode sites. However, these differences are compensated during later components by shorter latencies in anxious subjects compared to non-anxious one. These inverted effects seem indicate that the absence of difference in reaction time rely on a compensation of attentional level that tunes cortical activation in anxious subjects, but they have to hammer away to maintain performance.