46 resultados para Generalized Logistic Model
em Université de Lausanne, Switzerland
Resumo:
Introduction Walk-in centers may improve access to healthcare for some patients, due to their convenient location and extensive opening hours, with no need for appointment. Herein we describe and assess a new model of walk-in centre, characterized by care provided by residents and supervision achieved by experienced family doctors. Main aim of the study was to assess patients satisfaction about the care they received from residents and the supervision by family doctors. Secondary aim was to describe walk-in patients demographic characteristics and to identify potential associations with satisfaction. Methods The study was conducted in the walk-in centre of Lausanne. Patients who consulted between in April 2011 were automatically included and received a questionnaire in French. We used a five-point Likert scale, from "not at all satisfied" to "very satisfied", converted from 1 to 5. We focused on the satisfaction regarding residents care and supervision by a family doctor. The former was divided in three categories: "Skills", "Treatment" and "Behaviour". Mean satisfaction was calculated for each category and a multivariable logistic model was applied in order to identify associations among patients demographics. Results Response rate was 47% [184/395], Walk-in patients were more likely to be women, young, with a high education level. Patients were very satisfied with residents care, with median satisfaction between 4.5 and 5, for each category. Over than 90% of patients were "satisfied" or "very satisfied" that a family doctor was involved in the consultation. Age showed the major association of satisfaction. Discussion Patients were highly satisfied with care provided by residents and with involvement of a family doctor in the consultation. Older age showed the major association with satisfaction with a positive impact. The high satisfaction reported by walk-in patients supports this new model of walk-in centre.
Resumo:
An important statistical development of the last 30 years has been the advance in regression analysis provided by generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers prepared within the framework of an international workshop entitled: Advances in GLMs/GAMs modeling: from species distribution to environmental management, held in Riederalp, Switzerland, 6-11 August 2001.We first discuss some general uses of statistical models in ecology, as well as provide a short review of several key examples of the use of GLMs and GAMs in ecological modeling efforts. We next present an overview of GLMs and GAMs, and discuss some of their related statistics used for predictor selection, model diagnostics, and evaluation. Included is a discussion of several new approaches applicable to GLMs and GAMs, such as ridge regression, an alternative to stepwise selection of predictors, and methods for the identification of interactions by a combined use of regression trees and several other approaches. We close with an overview of the papers and how we feel they advance our understanding of their application to ecological modeling.
Resumo:
BACKGROUND: Walk-in centres may improve access to healthcare for some patients, due to their convenient location and extensive opening hours, with no need for an appointment. Herein, we describe and assess a new model of walk-in centre, characterised by care provided by residents and supervision achieved by experienced family doctors. The main aim of the study was to assess patients' satisfaction about the care they received from residents and their supervision by family doctors. The secondary aim was to describe walk-in patients' demographic characteristics and to identify potential associations with satisfaction. METHODS: The study was conducted in the walk-in centre of Lausanne. Patients who consulted between 11th and 31st April were automatically included and received a questionnaire in French. We used a five-point Likert scale, ranging from "not at all satisfied" to "very satisfied", converted from values of 1 to 5. We focused on the satisfaction regarding residents' care and supervision by a family doctor. The former was divided in three categories: "Skills", "Treatment" and "Behaviour". A mean satisfaction score was calculated for each category and a multivariable logistic model was applied in order to identify associations with patients' demographics. RESULTS: The overall response rate was 47% [184/395]. Walk-in patients were more likely to be women (62%), young (median age 31), with a high education level (40% of University degree or equivalent). Patients were "very satisfied" with residents' care, with a median satisfaction score between 4.5 and 5, for each category. Over 90% of patients were "satisfied" or "very satisfied" that a family doctor was involved in the consultation. Age showed the greatest association with satisfaction. CONCLUSION: Patients were highly satisfied with care provided by residents and with the involvement of a family doctor in the consultation. Older age showed the greatest positive association with satisfaction with a positive impact. The high level satisfaction reported by walk-in patients supports this new model of walk-in centre.
Resumo:
Aims: To assess the potential distribution of an obligate seeder and active pyrophyte, Cistus salviifolius, a vulnerable species in the Swiss Red List; to derive scenarios by changing the fire return interval; and to discuss the results from a conservation perspective. A more general aim is to assess the impact of fire as a natural factor influencing the vegetation of the southern slopes of the Alps. Locations: Alps, southern Switzerland. Methods: Presence-absence data to fit the model were obtained from the most recent field mapping of C. salviifolius. The quantitative environmental predictors used in this study include topographic, climatic and disturbance (fire) predictors. Models were fitted by logistic regression and evaluated by jackknife and bootstrap approaches. Changes in fire regime were simulated by increasing the time-return interval of fire (simulating longer periods without fire). Two scenarios were considered: no fire in the past 15 years; or in the past 35 years. Results: Rock cover, slope, topographic position, potential evapotranspiration and time elapsed since the last fire were selected in the final model. The Nagelkerke R-2 of the model for C. salviifolius was 0.57 and the Jackknife area under the curve evaluation was 0.89. The bootstrap evaluation revealed model robustness. By increasing the return interval of fire by either up to 15 years, or 35 years, the modelled C. salviifolius population declined by 30-40%, respectively. Main conclusions: Although fire plays a significant role, topography and rock cover appear to be the most important predictors, suggesting that the distribution of C. salviifolius in the southern Swiss Alps is closely related to the availability of supposedly competition-free sites, such as emerging bedrock, ridge locations or steep slopes. Fire is more likely to play a secondary role in allowing C. salviifolius to extend its occurrence temporarily, by increasing germination rates and reducing the competition from surrounding vegetation. To maintain a viable dormant seed bank for C. salviifolius, conservation managers should consider carrying out vegetation clearing and managing wild fire propagation to reduce competition and ensure sufficient recruitment for this species.
Resumo:
1. Model-based approaches have been used increasingly in conservation biology over recent years. Species presence data used for predictive species distribution modelling are abundant in natural history collections, whereas reliable absence data are sparse, most notably for vagrant species such as butterflies and snakes. As predictive methods such as generalized linear models (GLM) require absence data, various strategies have been proposed to select pseudo-absence data. However, only a few studies exist that compare different approaches to generating these pseudo-absence data. 2. Natural history collection data are usually available for long periods of time (decades or even centuries), thus allowing historical considerations. However, this historical dimension has rarely been assessed in studies of species distribution, although there is great potential for understanding current patterns, i.e. the past is the key to the present. 3. We used GLM to model the distributions of three 'target' butterfly species, Melitaea didyma, Coenonympha tullia and Maculinea teleius, in Switzerland. We developed and compared four strategies for defining pools of pseudo-absence data and applied them to natural history collection data from the last 10, 30 and 100 years. Pools included: (i) sites without target species records; (ii) sites where butterfly species other than the target species were present; (iii) sites without butterfly species but with habitat characteristics similar to those required by the target species; and (iv) a combination of the second and third strategies. Models were evaluated and compared by the total deviance explained, the maximized Kappa and the area under the curve (AUC). 4. Among the four strategies, model performance was best for strategy 3. Contrary to expectations, strategy 2 resulted in even lower model performance compared with models with pseudo-absence data simulated totally at random (strategy 1). 5. Independent of the strategy model, performance was enhanced when sites with historical species presence data were not considered as pseudo-absence data. Therefore, the combination of strategy 3 with species records from the last 100 years achieved the highest model performance. 6. Synthesis and applications. The protection of suitable habitat for species survival or reintroduction in rapidly changing landscapes is a high priority among conservationists. Model-based approaches offer planning authorities the possibility of delimiting priority areas for species detection or habitat protection. The performance of these models can be enhanced by fitting them with pseudo-absence data relying on large archives of natural history collection species presence data rather than using randomly sampled pseudo-absence data.
Resumo:
Western European landscapes have drastically changed since the 1950s, with agricultural intensifications and the spread of urban settlements considered the most important drivers of this land-use/land-cover change. Losses of habitat for fauna and flora have been a direct consequence of this development. In the present study, we relate butterfly occurrence to land-use/land-cover changes over five decades between 1951 and 2000. The study area covers the entire Swiss territory. The 10 explanatory variables originate from agricultural statistics and censuses. Both state as well as rate was used as explanatory variables. Species distribution data were obtained from natural history collections. We selected eight butterfly species: four species occur on wetlands and four occur on dry grasslands. We used cluster analysis to track land-use/land-cover changes and to group communes based on similar trajectories of change. Generalized linear models were applied to identify factors that were significantly correlated with the persistence or disappearance of butterfly species. Results showed that decreasing agricultural areas and densities of farms with more than 10 ha of cultivated land are significantly related with wetland species decline, and increasing densities of livestock seem to have favored disappearance of dry grassland species. Moreover, we show that species declines are not only dependent on land-use/land-cover states but also on the rates of change; that is, the higher the transformation rate from small to large farms, the higher the loss of dry grassland species. We suggest that more attention should be paid to the rates of landscape change as feasible drivers of species change and derive some management suggestions.
Resumo:
This study compared adherence (persistence and execution) during pregnancy and postpartum in HIV-positive women having taken part in the adherence-enhancing program of the Community Pharmacy of the Department of Ambulatory Care and Community Medicine in Lausanne between 2004 and 2012. This interdisciplinary program combined electronic drug monitoring and semi-structured, repeated motivational interviews. This was a retrospective, observational study. Observation period spread over from first adherence visit after last menstruation until 6 months after childbirth. Medication-taking was recorded by electronic drug monitoring. Socio-demographic and delivery data were collected from Swiss HIV Cohort database. Adherence data, barriers and facilitators were collected from pharmacy database. Electronic data were reconciled with pill-count and interview notes in order to include reported pocket-doses. Execution was analyzed over 3-day periods by a mixed effect logistic model, separating time before and after childbirth. This model allowed us to estimate different time slopes for both periods and to show a sudden fall associated with childbirth. Twenty-five pregnant women were included. Median age was 29 (IQR: 26.5, 32.0), women were in majority black (n_17,68%) and took a cART combining protease and nucleoside reverse transcriptase inhibitors (n_24,96%). Eleven women (44%) were ART-naı¨ve at the beginning of pregnancy. Twenty women (80%) were included in the program because of pregnancy. Women were included at all stages of pregnancy. Six women (24%) stopped the program during pregnancy, 3 (12%) at delivery, 4 (16%) during postpartum and 12 (48%) stayed in program at the end of observation time. Median number of visits was 4 (3.0, 6.3) during pregnancy and 3 (0.8, 6.0) during postpartum. Execution was continuously high during pregnancy, low at beginning of postpartum and increased gradually during the 6 months of postpartum. Major barriers to adherence were medication adverse events and difficulties in daily routine. Facilitators were motivation for promoting child-health and social support. The dramatic drop and very slow increase in cART adherence during postpartum might result in viral rebound and drug resistance. Although much attention is devoted to pregnant women, interdisciplinary care should also be provided to women in the community during first trimester of postpartum to support them in sustaining cART adherence.
Resumo:
Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.
Resumo:
r/K theory classically predicts that offspring size should increase under density-dependent selection. However, this is questionable, being based on implicit rather than explicit assumption (the logistic model does not include offsring size as a parameter). From recent models of optimal offspring size (Sibly & Calow, 1983; Taylor & Williams, 1984) it can be shown that density should select for larger offspring if density-dependence in the per capita rate of increase is mainly due to a reduction of the juvenile growth rate or survivorship. In contrast, density should select for smaller offspring if such density-dependence is mainly due to a reduction of adult fecundity or survivorship. Therfore, the outcome of selection cannot be predicted without precise knowledge of the density-dependence of age-specific reproduction and mortality rates. To test the above models, genetically identical individuals of Simocephalus vetulus (Müller) were reared in a density gradient; density-dependence in the per capita rate of increase was shown to be mainly due to a reduction of the juvenile growth rate, thereby selecting for larger offspring; offspring size at birth appeared to be phenotypically plastic and to increase with density. Models were therefore qualitatively supported. However, a discrepancy occurred in quantitative predictions; offspring were produced larger than predicted. Field and laboratory studies are suggested to address this.
Resumo:
During adolescence, cognitive abilities increase robustly. To search for possible related structural alterations of the cerebral cortex, we measured neuronal soma dimension (NSD = width times height), cortical thickness and neuronal densities in different types of neocortex in post-mortem brains of five 12-16 and five 17-24 year-olds (each 2F, 3M). Using a generalized mixed model analysis, mean normalized NSD comparing the age groups shows layer-specific change for layer 2 (p < .0001) and age-related differences between categorized type of cortex: primary/primary association cortex (BA 1, 3, 4, and 44) shows a generalized increase; higher-order regions (BA 9, 21, 39, and 45) also show increase in layers 2 and 5 but decrease in layers 3, 4, and 6 while limbic/orbital cortex (BA 23, 24, and 47) undergoes minor decrease (BA 1, 3, 4, and 44 vs. BA 9, 21, 39, and 45: p = .036 and BA 1, 3, 4, and 44 vs. BA 23, 24, and 47: p = .004). These data imply the operation of cortical layer- and type-specific processes of growth and regression adding new evidence that the human brain matures during adolescence not only functionally but also structurally.
Resumo:
Designing an efficient sampling strategy is of crucial importance for habitat suitability modelling. This paper compares four such strategies, namely, 'random', 'regular', 'proportional-stratified' and 'equal -stratified'- to investigate (1) how they affect prediction accuracy and (2) how sensitive they are to sample size. In order to compare them, a virtual species approach (Ecol. Model. 145 (2001) 111) in a real landscape, based on reliable data, was chosen. The distribution of the virtual species was sampled 300 times using each of the four strategies in four sample sizes. The sampled data were then fed into a GLM to make two types of prediction: (1) habitat suitability and (2) presence/ absence. Comparing the predictions to the known distribution of the virtual species allows model accuracy to be assessed. Habitat suitability predictions were assessed by Pearson's correlation coefficient and presence/absence predictions by Cohen's K agreement coefficient. The results show the 'regular' and 'equal-stratified' sampling strategies to be the most accurate and most robust. We propose the following characteristics to improve sample design: (1) increase sample size, (2) prefer systematic to random sampling and (3) include environmental information in the design'
Resumo:
OBJECTIVE: To evaluate the power of various parameters of the vestibulo-ocular reflex (VOR) in detecting unilateral peripheral vestibular dysfunction and in characterizing certain inner ear pathologies. STUDY DESIGN: Prospective study of consecutive ambulatory patients presenting with acute onset of peripheral vertigo and spontaneous nystagmus. SETTING: Tertiary referral center. PATIENTS: Seventy-four patients (40 females, 34 males) and 22 normal subjects (11 females, 11 males) were included in the study. Patients were classified in three main diagnoses: vestibular neuritis: 40; viral labyrinthitis: 22; Meniere's disease: 12. METHODS: The VOR function was evaluated by standard caloric and impulse rotary tests (velocity step). A mathematical model of vestibular function was used to characterize the VOR response to rotational stimulation. The diagnostic value of the different VOR parameters was assessed by uni- and multivariable logistic regression. RESULTS: In univariable analysis, caloric asymmetry emerged as the most powerful VOR parameter in identifying unilateral vestibular deficit, with a boundary limit set at 20%. In multivariable analysis, the combination of caloric asymmetry and rotational time constant asymmetry significantly improved the discriminatory power over caloric alone (p<0.0001) and produced a detection score with a correct classification of 92.4%. In discriminating labyrinthine diseases, different combinations of the VOR parameters were obtained for each diagnosis (p<0.003) supporting that the VOR characteristics differ between the three inner ear disorders. However, the clinical usefulness of these characteristics in separating the pathologies was limited. CONCLUSION: We propose a powerful logistic model combining the indices of caloric and time constant asymmetries to detect a peripheral vestibular loss, with an accuracy of 92.4%. Based on vestibular data only, the discrimination between the different inner ear diseases is statistically possible, which supports different pathophysiologic changes in labyrinthine pathologies.
Resumo:
The population density of an organism is one of the main aspects of its environment, and shoud therefore strongly influence its adaptive strategy. The r/K theory, based on the logistic model, was developed to formalize this influence. K-selectioon is classically thought to favour large body sizes. This prediction, however, cannot be directly derived from the logistic model: some auxiliary hypotheses are therefor implicit. These are to be made explicit if the theory is to be tested. An alternative approach, based on the Euler-Lotka equation, shows that density itself is irrelevant, but that the relative effect of density on adult and juvenile features is crucial. For instance, increasing population will select for a smaller body size if the density affects mainly juvenile growth and/or survival. In this case, density shoud indeed favour large body sizes. The theory appears nevertheless inconsistent, since a probable consequence of increasing body size will be a decrease in the carrying capacity
Resumo:
1. Identifying those areas suitable for recolonization by threatened species is essential to support efficient conservation policies. Habitat suitability models (HSM) predict species' potential distributions, but the quality of their predictions should be carefully assessed when the species-environment equilibrium assumption is violated.2. We studied the Eurasian otter Lutra lutra, whose numbers are recovering in southern Italy. To produce widely applicable results, we chose standard HSM procedures and looked for the models' capacities in predicting the suitability of a recolonization area. We used two fieldwork datasets: presence-only data, used in the Ecological Niche Factor Analyses (ENFA), and presence-absence data, used in a Generalized Linear Model (GLM). In addition to cross-validation, we independently evaluated the models with data from a recolonization event, providing presences on a previously unoccupied river.3. Three of the models successfully predicted the suitability of the recolonization area, but the GLM built with data before the recolonization disagreed with these predictions, missing the recolonized river's suitability and badly describing the otter's niche. Our results highlighted three points of relevance to modelling practices: (1) absences may prevent the models from correctly identifying areas suitable for a species spread; (2) the selection of variables may lead to randomness in the predictions; and (3) the Area Under Curve (AUC), a commonly used validation index, was not well suited to the evaluation of model quality, whereas the Boyce Index (CBI), based on presence data only, better highlighted the models' fit to the recolonization observations.4. For species with unstable spatial distributions, presence-only models may work better than presence-absence methods in making reliable predictions of suitable areas for expansion. An iterative modelling process, using new occurrences from each step of the species spread, may also help in progressively reducing errors.5. Synthesis and applications. Conservation plans depend on reliable models of the species' suitable habitats. In non-equilibrium situations, such as the case for threatened or invasive species, models could be affected negatively by the inclusion of absence data when predicting the areas of potential expansion. Presence-only methods will here provide a better basis for productive conservation management practices.
Resumo:
Many studies have investigated the impacts that climate change could potentially have on the distribution of plant species, but few have attempted to constrain projections through plant dispersal limitations. Instead, most studies published so far have been using the simplification of considering dispersal as either unlimited or null. However, depending on a species' dispersal capacity, landscape fragmentation, and the rate of climatic change, these assumptions can lead to serious over- or underestimation of a species' future distribution. To quantify the discrepancies between unlimited, realistic, and no dispersal scenarios, we carried out projections of future distribution over the 21st century for 287 mountain plant species in a study area of the Western Swiss Alps. For each species, simulations were run for four dispersal scenarios (unlimited dispersal, no dispersal, realistic dispersal and realistic dispersal with long-distance dispersal events) and under four climate change scenarios. Although simulations accounting for realistic dispersal limitations did significantly differ from those considering dispersal as unlimited or null in terms of projected future distribution, using the unlimited dispersal simplification nevertheless provided good approximations for species extinctions under more moderate climate change scenarios. Overall, simulations accounting for dispersal limitations produced, for our mountainous study area, results that were significantly closer to unlimited dispersal than to no dispersal. Finally, analyzing the temporal pattern of species extinctions over the entire 21st century showed that, due to the possibility of a large number of species shifting their distribution to higher elevation, important species extinctions for our study area might not occur before the 2080-2100 time periods.