195 resultados para Gene function
em Université de Lausanne, Switzerland
Resumo:
Dermatophytes cause the majority of superficial mycoses in humans and animals. However, little is known about the pathogenicity of this specialized group of filamentous fungi, for which molecular research has been limited thus far. During experimental infection of guinea pigs by the human pathogenic dermatophyte Arthroderma benhamiae, we recently detected the activation of the fungal gene encoding malate synthase AcuE, a key enzyme of the glyoxylate cycle. By the establishment of the first genetic system for A. benhamiae, specific ΔacuE mutants were constructed in a wild-type strain and, in addition, in a derivative in which we inactivated the nonhomologous end-joining pathway by deletion of the A. benhamiae KU70 gene. The absence of AbenKU70 resulted in an increased frequency of the targeted insertion of linear DNA by homologous recombination, without notably altering the monitored in vitro growth abilities of the fungus or its virulence in a guinea pig infection model. Phenotypic analyses of ΔacuE mutants and complemented strains depicted that malate synthase is required for the growth of A. benhamiae on lipids, major constituents of the skin. However, mutant analysis did not reveal a pathogenic role of the A. benhamiae enzyme in guinea pig dermatophytosis or during epidermal invasion of the fungus in an in vitro model of reconstituted human epidermis. The presented efficient system for targeted genetic manipulation in A. benhamiae, paired with the analyzed infection models, will advance the functional characterization of putative virulence determinants in medically important dermatophytes.
Resumo:
Summary Phosphorus is one of the major macronutrients required for plant growth and development. Plant roots acquire phosphorus as inorganic phosphate (Pi), which is further distributed to the shoot, via the transpiration stream and root pressure, where Pi is imported again into cells. PHO1 in Arabidopsis has been identified as a protein involved in the loading of Pi into the root xylem. PHO1 does not have any homology to described Pi transporters including the Pht1 family of H+/ Pi cotransporters. PHO1 bears two domains, SPX and EXS domains, previously identified in Saccharomyces cerevisiae proteins involved in Pi transport and/or sensing, or in sorting proteins to endomembranes. Phylogenetic analysis of the PHO1 gene family revealed the presence of three clusters, with PHO1 and PHO1;H1 forming one cluster. The biological significance behind this cluster was demonstrated by the complementation of the pho1 mutant with only PHO1 and PHO1;H1, of all the PHO1 family members, when expressed under the PHO1 promoter. PHO1 has been shown to be expressed mostly in the root vascular cylinder and at low level in the shoot. PHO1;H1 had a different expression pattern, being expressed in both root and shoot vascular cylinder to the same level, with the levels in leaves increasing with the leaf maturity, suggesting additional role of PHO1;H1 in the Pi mobilization in leaves. In order to further explore the role of PHO1, Pi dynamics was studied on plants expressing PHO1 at different levels compared to the wild type: PHO1 overexpressors, PHO1 underexpressors and the pho1 mutant. Overexpression of the PHO1 protein in the shoot vascular tissue was shown to lead to increased Pi efflux out of the leaf cells and Pi accumulation in the shoot xylem apoplast compared to wild type, confirming the hypothesized role of PHO1 in xylem loading with Pi. The overexpression of PHO1 in the shoot was responsible far both changed Pi dynamic and stunted growth of PHO1 overexpressors, as shown by grafting experiments between wild type and PHO1 overexpressor. We found a ca. 2 fold decrease of shoot phosphorus and a 5-10 fold decrease in vacuolar Pi content in the PHO1 underexpressors and the pho1 null mutant compared to wild type, consistent with the role of PHO1 in the transfer of Pi from the root to the shoot. Shoot Pi deficiency results in a poor growth of the pho1 mutant. Grafting experiments between pho1 and wild type confirmed that both Pi deficiency and stunt growth of the pho1 mutant were dependent on the pho1 root, further supporting the importance of PHO1 in the root xylem loading with Pi. The pho1 mutant and the PHO1 underexpressors accumulated 8-15 fold more Pi in the root relative to wild type. In contrast to the pho1 mutant, the growth of PHO1 underexpressors was not impaired by the low shoat Pi content. This finding suggests that either PHO1 protein or root Pi concentration is important in Pi signaling and development of Pi deficiency symptoms leading to reduced growth. Résumé Le phosphore est l'un des nutriments essentiels à la croissance et au développement des plantes. Les racines absorbent le phosphore sous forme de phosphate inorganique (Pi) qui est dirigé, par la transpiration et la pression de la racine, vers les feuilles où le phosphate est acquis par les cellules. La protéine PHO1 a été démontrée indispensable au chargement du Pi dans le xylème des racines d'Arabidopsis. PHO1 ne démontre pas d'homologie aux transporteurs de Pi connus, incluant la famille Pht1 de cotransporteurs H+/Pi qui ont comme fonction le transport du phosphate à l'intérieur de la cellule. PHO1 contient deux domaines, SPX et EXS, aussi présents dans des protéines de Saccharomyces cerevisiae impliquées dans le transport ou la perception du phosphate, ou dans la localisation des protéines vers différentes membranes. Le génome d'Arabidopsis contient onze gènes homologues à PHO1. Neuf de ces homologues sont répartis en trois groupes. PHO1 et PHO1;H1 forment un de ces groupes. Nos travaux ont démontré que seuls PHO1;H1 et PHO1, sous contrôle du promoteur PHO1, peuvent complémenter le mutant pho1. PHO1 est exprimé principalement dans le cylindre vasculaire de la racine et faiblement dans la partie aérienne. Le degré d'expression de PHO1;H1 est similaire dans le cylindre vasculaire de la racine et des feuilles. Ceci suggère que PHO1;H1 est aussi impliqué dans la mobilisation du Pi dans les feuilles, en plus de son rôle dans le transfert du Pi dans le xylème des racines. Afin de mieux explorer le rôle de PHO1, la dynamique du phosphate a été observée dans trois lignées de plantes transgéniques: un sur-expresseur de PHO1, un sous-expresseur de PHO1 et le mutant pho1. La sur-expression de PHO1 dans le tissue vasculaire des feuilles a provoqué l'efflux du Pi vers l'espace apoplastic du xylème, ce qui confirme le rôle de PHO1 dans le chargement du Pi dans le xylème. La sur-expressìon de PHO1 dans la rosette est responsable d'un changement de la dynamique du Pi et de la diminution de la croissance, ce qui fut démontré par une expérience de greffe de la rosette du sur-expresseur de PHO1 sur les racines du sauvage. On a observé pour le sous-expresseur de PHO1 et le mutant pho1 une diminution du phosphore d'environ 2 fais au niveau des feuilles, et une diminution de 5-10 fois du Pi dans les vacuoles des feuilles, par rapport au sauvage. Ceci confirme le rôle proposé de PHO1 dans le transfert du Pi des racines aux feuilles. La carence de Pi chez pho1 implique une diminution de la taille de la rosette. Pour expliquer ce phénotype une autre expérience de greffe démontra que la cause de ce changement provenait des racines. Ceci renforce l'hypothèse de l'importance du rôle de PHO1 dans le xylème de la racine pour le chargement du Pi. Le mutant phot et le sous-expresseur de PHO1 accumulent 8-15 fois plus de Pi dans leurs racines comparé au sauvage. Cependant, contrairement au phot mutant, le sous-expresseur de PHO1 avait une croissance comparable au sauvage malgré le niveau bas du Pi dans les feuilles. Ceci suggère que la taille de la rosette lors d'une carence en Pi chez Arabidopsis serait la conséquence d'un changement de concentration de Pi dans les racines ou d'une influence de la protéine PHO1.
Resumo:
CRISPR/Cas9-mediated targeted mutagenesis allows efficient generation of loss-of-function alleles in zebrafish. To date, this technology has been primarily used to generate genetic knockout animals. Nevertheless, the study of the function of certain loci might require tight spatiotemporal control of gene inactivation. Here, we show that tissue-specific gene disruption can be achieved by driving Cas9 expression with the Gal4/UAS system. Furthermore, by combining the Gal4/UAS and Cre/loxP systems, we establish a versatile tool to genetically label mutant cell clones, enabling their phenotypic analysis. Our technique has the potential to be applied to diverse model organisms, enabling tissue-specific loss-of-function and phenotypic characterization of live and fixed tissues.
Resumo:
Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics.
Resumo:
During my PhD, my aim was to provide new tools to increase our capacity to analyse gene expression patterns, and to study on a large-scale basis the evolution of gene expression in animals. Gene expression patterns (when and where a gene is expressed) are a key feature in understanding gene function, notably in development. It appears clear now that the evolution of developmental processes and of phenotypes is shaped both by evolution at the coding sequence level, and at the gene expression level.Studying gene expression evolution in animals, with complex expression patterns over tissues and developmental time, is still challenging. No tools are available to routinely compare expression patterns between different species, with precision, and on a large-scale basis. Studies on gene expression evolution are therefore performed only on small genes datasets, or using imprecise descriptions of expression patterns.The aim of my PhD was thus to develop and use novel bioinformatics resources, to study the evolution of gene expression. To this end, I developed the database Bgee (Base for Gene Expression Evolution). The approach of Bgee is to transform heterogeneous expression data (ESTs, microarrays, and in-situ hybridizations) into present/absent calls, and to annotate them to standard representations of anatomy and development of different species (anatomical ontologies). An extensive mapping between anatomies of species is then developed based on hypothesis of homology. These precise annotations to anatomies, and this extensive mapping between species, are the major assets of Bgee, and have required the involvement of many co-workers over the years. My main personal contribution is the development and the management of both the Bgee database and the web-application.Bgee is now on its ninth release, and includes an important gene expression dataset for 5 species (human, mouse, drosophila, zebrafish, Xenopus), with the most data from mouse, human and zebrafish. Using these three species, I have conducted an analysis of gene expression evolution after duplication in vertebrates.Gene duplication is thought to be a major source of novelty in evolution, and to participate to speciation. It has been suggested that the evolution of gene expression patterns might participate in the retention of duplicate genes. I performed a large-scale comparison of expression patterns of hundreds of duplicated genes to their singleton ortholog in an outgroup, including both small and large-scale duplicates, in three vertebrate species (human, mouse and zebrafish), and using highly accurate descriptions of expression patterns. My results showed unexpectedly high rates of de novo acquisition of expression domains after duplication (neofunctionalization), at least as high or higher than rates of partitioning of expression domains (subfunctionalization). I found differences in the evolution of expression of small- and large-scale duplicates, with small-scale duplicates more prone to neofunctionalization. Duplicates with neofunctionalization seemed to evolve under more relaxed selective pressure on the coding sequence. Finally, even with abundant and precise expression data, the majority fate I recovered was neither neo- nor subfunctionalization of expression domains, suggesting a major role for other mechanisms in duplicate gene retention.
Resumo:
Gene expression patterns are a key feature in understanding gene function, notably in development. Comparing gene expression patterns between animals is a major step in the study of gene function as well as of animal evolution. It also provides a link between genes and phenotypes. Thus we have developed Bgee, a database designed to compare expression patterns between animals, by implementing ontologies describing anatomies and developmental stages of species, and then designing homology relationships between anatomies and comparison criteria between developmental stages. To define homology relationships between anatomical features we have developed the software Homolonto, which uses a modified ontology alignment approach to propose homology relationships between ontologies. Bgee then uses these aligned ontologies, onto which heterogeneous expression data types are mapped. These already include microarrays and ESTs.
Resumo:
Selective pressures related to gene function and chromosomal architecture are acting on genome sequences and can be revealed, for instance, by appropriate genometric methods. Cumulative nucleotide skew analyses, i.e., GC, TA, and ORF orientation skews, predict the location of the origin of DNA replication for 88 out of 100 completely sequenced bacterial chromosomes. These methods appear fully reliable for proteobacteria, Gram-positives, and spirochetes as well as for euryarchaeotes. Based on this genome architecture information, coorientation analyses reveal that in prokaryotes, ribosomal RNA (rRNA) genes encoding the small and large ribosomal subunits are all transcribed in the same direction as DNA replication; that is, they are located along the leading strand. This result offers a simple and reliable method for circumscribing the region containing the origin of the DNA replication and reveals a strong selective pressure acting on the orientation of rRNA genes similar to the weaker one acting on the orientation of ORFs. Rate of coorientation of transfer RNA (tRNA) genes with DNA replication appears to be taxon-specific. Analyzing nucleotide biases such as GC and TA skews of genes and plotting one against the other reveals a taxonomic clusterization of species. All ribosomal RNA genes are enriched in Gs and depleted in Cs, the only so far known exception being the rRNA genes of deuterostomian mitochondria. However, this exception can be explained by the fact that in the chromosome of the human mitochondrion, the model of the deuterostomian organelle genome, DNA replication, and rRNA transcription proceed in opposite directions. A general rule is deduced from prokaryotic and mitochondrial genomes: ribosomal RNA genes that are transcribed in the same direction as the DNA replication are enriched in Gs, and those transcribed in the opposite direction are depleted in Gs.
Resumo:
The European Mouse Mutagenesis Consortium is the European initiative contributing to the international effort on functional annotation of the mouse genome. Its objectives are to establish and integrate mutagenesis platforms, gene expression resources, phenotyping units, storage and distribution centers and bioinformatics resources. The combined efforts will accelerate our understanding of gene function and of human health and disease.
Resumo:
Recently, using HIV-1-derived lentivectors, we obtained efficient transduction of primary human B lymphocytes cocultured with murine EL-4 B5 thymoma cells, but not of isolated B cells activated by CD40 ligation. Coculture with a cell line is problematic for gene therapy applications or study of gene functions. We have now found that transduction of B cells in a system using CpG DNA was comparable to that in the EL-4 B5 system. A monocistronic vector with a CMV promoter gave 32 +/- 4.7% green fluorescent protein (GFP)+ cells. A bicistronic vector, encoding IL-4 and GFP in the first and second cistrons, respectively, gave 14.2 +/- 2.1% GFP+ cells and IL-4 secretion of 1.3 +/- 0.2 ng/10(5) B cells/24 h. This was similar to results obtained in CD34+ cells using the elongation factor-1alpha promoter. Activated memory and naive B cells were transducible. After transduction with a bicistronic vector encoding a viral FLIP molecule, vFLIP was detectable by FACS or Western blot in GFP+, but not in GFP-, B cells, and 57% of sorted GFP+ B cells were protected against Fas ligand-induced cell death. This system should be useful for gene function research in primary B cells and development of gene therapies.
Resumo:
Gene duplication was prevalent during hominoid evolution, yet little is known about the functional fate of new ape gene copies. We characterized the CDC14B cell cycle gene and the functional evolution of its hominoid-specific daughter gene, CDC14Bretro. We found that CDC14B encodes four different splice isoforms that show different subcellular localizations (nucleus or microtubule-associated) and functional properties. A microtubular CDC14B variant spawned CDC14Bretro through retroposition in the hominoid ancestor 18-25 million years ago (Mya). CDC14Bretro evolved brain-/testis-specific expression after the duplication event and experienced a short period of intense positive selection in the African ape ancestor 7-12 Mya. Using resurrected ancestral protein variants, we demonstrate that by virtue of amino acid substitutions in distinct protein regions during this time, the subcellular localization of CDC14Bretro progressively shifted from the association with microtubules (stabilizing them) to an association with the endoplasmic reticulum. CDC14Bretro evolution represents a paradigm example of rapid, selectively driven subcellular relocalization, thus revealing a novel mode for the emergence of new gene function
Resumo:
Evolution of proteins after whole-genome duplicationGene and genome duplication are considered major mechanisms in the creation of newfunctions in genomes, or in the refinement of networks by the division of function amongmore genes. In animals, the best demonstrated whole genome duplication occurred at theorigin of Teleost fishes. This makes fishes an ideal model to study the consequences ofgenome duplication, particularly since we have a good sampling of genome sequences,abundant functional information, and a very well studied outgroup: the tetrapodes (includinghuman). More specifically, I studied the consequences of duplication on proteins usingevolutionary models to infer adaptive events. I analysed the influence of positive selection invertebrate genes, by contrasting singleton genes and duplicated genes. The conclusion of theanalyses was threefold: (i) positive selection affects diverse phylogenetic branches anddiverse gene categories during vertebrate evolution; (ii) it concerns only a small proportion ofsites (1%-5%); and (iii) whole genome duplication had no detectable impact on theprevalence of this positive selection.I also studied evolution at the amino acid level with different methods to detect functionalshifts (covarion process and constant-but-different process). As in my previous research, Ifound similar numbers of functional shifts between duplicates and between orthologs.The accepted framework for studies of molecular evolution is that orthologs share the samefunction, whereas the function of paralogs diverges. This framework gives a special place togene duplication in evolution, as the main mechanism for generating novelty. With myprevious results showing that duplication and speciation are not so different, we investigatedthe literature to question the evidence for similar or divergent evolution of gene function afterduplication relative to speciation genes. This led us to propose a more rigorous design offuture studies of gene duplication.Finally, based on my automated protocol, we built a database of positive selection invertebrates' genes, Selectome. This database is freely available on the web and will helpfuture evolutionary as well as biochemical studies.
Resumo:
BACKGROUND: The expansion of amino acid repeats is determined by a high mutation rate and can be increased or limited by selection. It has been suggested that recent expansions could be associated with the potential of adaptation to new environments. In this work, we quantify the strength of this association, as well as the contribution of potential confounding factors. RESULTS: Mammalian positively selected genes have accumulated more recent amino acid repeats than other mammalian genes. However, we found little support for an accelerated evolutionary rate as the main driver for the expansion of amino acid repeats. The most significant predictors of amino acid repeats are gene function and GC content. There is no correlation with expression level. CONCLUSIONS: Our analyses show that amino acid repeat expansions are causally independent from protein adaptive evolution in mammalian genomes. Relaxed purifying selection or positive selection do not associate with more or more recent amino acid repeats. Their occurrence is slightly favoured by the sequence context but mainly determined by the molecular function of the gene.
Resumo:
Metabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the EUMODIC EMPReSS protocols across a large panel of isogenic but diverse strains of mice (BXD type) to study the genetic control of metabolism. We generated and analyzed 140 classical phenotypes and deposited these in an open-access web service for systems genetics (www.genenetwork.org). Heritability, influence of sex, and genetic modifiers of traits were examined singly and jointly by using quantitative-trait locus (QTL) and expression QTL-mapping methods. Traits and networks were linked to loci encompassing both known variants and novel candidate genes, including alkaline phosphatase (ALPL), here linked to hypophosphatasia. The assembled and curated phenotypes provide key resources and exemplars that can be used to dissect complex metabolic traits and disorders.
Resumo:
The cdc10 gene of the fission yeast Schizosaccharomyces pombe is required for traverse of start and commitment to the mitotic cell division cycle rather than other fates. The product of the gene, p85cdc10, is a component of a factor that is thought to be involved in regulating the transcription of genes that are required for DNA synthesis. In order to define regions of the p85cdc10 protein that are important for its function a fine structure genetic map of the cdc10 gene was derived and the sequences of 13 cdc10ts mutants determined. The 13 mutants tested define eight alleles. Eleven of the mutants are located in the region that contains the two copies of the cdc10/SWI6 repeat motif, implicating it as important for p85cdc10 function.
Resumo:
Lymphocytes regulate their responsiveness to IL-2 through the transcriptional control of the IL-2R alpha gene, which encodes a component of the high affinity IL-2 receptor. In the mouse IL-2R alpha gene this control is exerted via two regulatable elements, a promoter proximal region, and an IL-2-responsive enhancer (IL-2rE) 1.3 kb upstream. In vitro and in vivo functional analysis of the IL-2rE in the rodent thymic lymphoma-derived, CD4- CD8- cell line PC60 demonstrated that three separate elements, sites I, II, and III, were necessary for IL-2 responsiveness; these three sites demonstrate functional cooperation. Site III contains a consensus binding motif for members of the Ets family of transcription factors. Here we demonstrate that Elf-1, an Ets-like protein, binds to site III and participates in IL-2 responsiveness. In vitro site III forms a complex with a protein constitutively present in nuclear extracts from PC60 cells as well as from normal CD4- CD8- thymocytes. We have identified this molecule as Elf-1 according to a number of criteria. The complex possesses an identical electrophoretic mobility to that formed by recombinant Elf-1 protein and is super-shifted by anti-Elf-1 antibodies. Biotinylated IL-2rE probes precipitate Elf-1 from PC60 extracts provided site III is intact and both recombinant and PC60-derived proteins bind with the same relative affinities to different mutants of site III. In addition, by introducing mutations into the core of the site III Ets-like motif and comparing the corresponding effects on the in vitro binding of Elf-1 and the in vivo IL-2rE activity, we provide strong evidence that Elf-1 is directly involved in IL-2 responsiveness. The nature of the functional cooperativity observed between Elf-1 and the factors binding sites I and II remains unresolved; experiments presented here however suggest that this effect may not require direct interactions between the proteins binding these three elements.