55 resultados para Gemstone Team F.I.T.N.E.S.S. (Fun Interactive Techniques for New Exercise and Sport Styles)
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: Several studies observed a female advantage in the prognosis of cutaneous melanoma, for which behavioral factors or an underlying biologic mechanism might be responsible. Using complete and reliable follow-up data from four phase III trials of the European Organisation for Research and Treatment of Cancer (EORTC) Melanoma Group, we explored the female advantage across multiple end points and in relation to other important prognostic indicators. PATIENTS AND METHODS: Patients diagnosed with localized melanoma were included in EORTC adjuvant treatment trials 18832, 18871, 18952, and 18961 and randomly assigned during the period of 1984 to 2005. Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% CIs for women compared with men, adjusted for age, Breslow thickness, body site, ulceration, performed lymph node dissection, and treatment. RESULTS: A total of 2,672 patients with stage I/II melanoma were included. Women had a highly consistent and independent advantage in overall survival (adjusted HR, 0.70; 95% CI, 0.59 to 0.83), disease-specific survival (adjusted HR, 0.74; 95% CI, 0.62 to 0.88), time to lymph node metastasis (adjusted HR, 0.70; 95% CI, 0.51 to 0.96), and time to distant metastasis (adjusted HR, 0.69; 95% CI, 0.59 to 0.81). Subgroup analysis showed that the female advantage was consistent across all prognostic subgroups (with the possible exception of head and neck melanomas) and in pre- and postmenopausal age groups. CONCLUSION: Women have a consistent and independent relative advantage in all aspects of the progression of localized melanoma of approximately 30%, most likely caused by an underlying biologic sex difference.
Resumo:
SummarySimultaneous detection of aneuploidies for chromosomes 4, 6,10 and 17 by automated four color l-FISH in high hyperdiploid acute lymphoblastic leukemia: diagnostic assessment, clonal heterogeneity and chromosomal instability in adultsAnna Talamo BlandinService de Génétique Médicale, Unité de Cytogénétique du Cancer, CHUVAcute lymphoblastic leukemia (ALL) is a malignant hemopathy characterized by the accumulation of the immature lymphoid cells in the bone marrow and, most often, in the peripheral blood. ALL is a heterogeneous disease with distinct biological and prognostic entities. At diagnosis, cytogenetic and molecular findings constitute important and independent prognostic factors. High hyperdiploidy with 51-67 chromosomes (HeH), one of the largest cytogenetic subsets of ALL, in childhood particularly, is generally associated with a relatively favorable outcome. Chromosome gain is nonrandom, extracopies of some chromosome occurring more frequently than those of others. Concurrent presence of trisomy for chromosomes 4, 10 and 17 confers an especially good prognosis. The first aim of our work was to develop an automated four color interphase fluorescence in situ hybridization (l-FISH) methodology and to assess its ability to detect concurrent aneuploidies 4, 6, 10 and 17 in 10 ALL patients. Various combinations of aneuploidies were identified. All clones detected by conventional cytogenetics were also observed by l-FISH. However, in all patients, l-FISH revealed numerous additional abnormal clones, leading to a high level of clonal heterogeneity. Our second aim has been to investigate the nature and origin of this clonal heterogeneity and to test for the presence of chromosome instability (CIN) in HeH ALL at initial presentation. Ten HeH ALL and 10 non-HeH ALL patients were analysed by four colour l-FISH and numerical CIN values were determined for all four chromosomes together and for each chromosome and patient group, an original approach in ALL. CIN values in HeH ALL proved to be much higher than#iose in non-HeH ALL, suggesting that numerical CIN may be at the origin of the high level of clonal heterogeneity revealed by l-FISH. Our third aim has been to study the evolution of these cytogenetic features during the course of the disease in 10 HeH ALL patients. Clonal heterogeneity was also observed again during disease progression, particularly at relapse. Clones detected at initial presentation generally reappeared in relapse, in most cases with newly generated ones. A significant correlation between the number of abnormal clones and CIN suggested that the higher the instability, the larger the number of abnormal clones. Whereas clonal heterogeneity and its evolution most probably result from underlying chromosome instability, operating processes remain conjectural.RésuméLa leucémie lymphoblastique aiguë (LLA) est une hémopathie maligne qui résulte de l'accumulationde cellules lymphoïdes immatures dans la moelle osseuse, et, le plus souvent, dans le sangpériphérique également. La LLA est une affection hétérogène au sein de laquelle se distinguentplusieurs entités biologiques et pronostiques. Les données cytogénétiques et moléculaires font partieintégrante du diagnostic et jouent un rôle essentiel dans l'évaluation du pronostic. L'hyperdiploïdieélevée à 51-67 chromosomes (HeH), relativement fréquente, en particulier chez l'enfant, s'associe àun pronostic favorable. Le gain de chromosomes ne relève pas du hasard, certains chromosomesétant plus fréquemment impliqués que d'autres. La présence simultanée des trisomies 4, 6, et 17s'associe à un pronostic particulièrement bon. Le premier but du travail a été de développer uneméthode d'analyse automatique par hybridation in situ fluorescente interphasique (I-FISH) à 4couleurs et de tester sa capacité à identifier la présence simultanée d'aneuploïdies 4, 6, 10 et 17 dans10 cas de LLA. Différentes combinaisons d'aneuploïdies ont été identifiées. Tous les clones détectéspar cytogénétique conventionnelle l'ont été par I-FISH. Or, chez tous les patients, l'I-FISH a révélé denombreux clones anormaux additionnels générant un degré élevé d'hétérogénéité clonale. Notredeuxième but a été d'investiguer la nature et l'origine de cette hétérogénéité et de tester la présenced'instabilité chromosomique (CIN) chez les patients avec une LLA HeH en presentation initiale. DixLLA HeH et 10 LLA non-HeH ont été analysées par I-FISH et les valeurs de CIN numérique ont étédéterminées pour les 4 chromosomes ensemble et pour chaque chromosome et groupe de patients,approche originale dans la LLA. Ces valeurs étant beaucoup plus élevées dans la LLA HeH que dansla LLA non-HeH, elles favorisent l'hypothèse selon laquelle la CIN serait à l'origine de l'hétérogénéitéclonale révélée par I-FISH. Le troisième but de notre travail a été d'étudier l'évolution de cescaractéristiques cytogénétiques au cours de la maladie dans 10 cas de LLA HeH. L'hétérogénéitéclonale a été retrouvée lors de la progression de la maladie, en particulier en rechute, où les clonesanormaux détectés en présentation initiale réapparaissent, généralement accompagnés de clonesnouveaux. La corrélation existant entre nombre de clones anormaux et valeurs de CIN suggère queplus l'instabilité est élevée, plus le nombre de clones anormaux est grand. Bien que l'hétérogénéitéclonale et son évolution résultent très probablement de l'instabilité chromosomique, les processus àl'oeuvre ne sont pas entièrement élucidés.
Resumo:
In the Ballabeina study, we investigated age- and BMI-group-related differences in aerobic fitness (20 m shuttle run), agility (obstacle course), dynamic (balance beam) and static balance (balance platform), and physical activity (PA, accelerometers) in 613 children (M age = 5.1 years, SD = 0.6). Normal weight (NW) children performed better than overweight (OW) children in aerobic fitness, agility, and dynamic balance (all p <.001), while OWchildren had a better static balance (p < .001). BMI-group-related differences in aerobic fitness and agility were larger in older children (p for interaction with age = .01) in favor of the NW children. PA did not differ between NW and OW (p > or = .1), but did differ between NW and obese children (p < .05). BMI-group-related differences in physical fitness can already be present in preschool-age children.
Resumo:
Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3-10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution.
Resumo:
Buchheit, M, Al Haddad, H, Millet GP, Lepretre, PM, Newton, M, and Ahmaidi, S. Cardiorespiratory and cardiac autonomic responses to 30-15 Intermittent Fitness Test in team sport players. J Strength Cond Res 23(1): xxx-xxx, 2009-The 30-15 Intermittent Fitness Test (30-15IFT) is an attractive alternative to classic continuous incremental field tests for defining a reference velocity for interval training prescription in team sport athletes. The aim of the present study was to compare cardiorespiratory and autonomic responses to 30-15IFT with those observed during a standard continuous test (CT). In 20 team sport players (20.9 +/- 2.2 years), cardiopulmonary parameters were measured during exercise and for 10 minutes after both tests. Final running velocity, peak lactate ([La]peak), and rating of perceived exertion (RPE) were also measured. Parasympathetic function was assessed during the postexercise recovery phase via heart rate (HR) recovery time constant (HRRtau) and HR variability (HRV) vagal-related indices. At exhaustion, no difference was observed in peak oxygen uptake (&OV0312;o2peak), respiratory exchange ratio, HR, or RPE between 30-15IFT and CT. In contrast, 30-15IFT led to significantly higher minute ventilation, [La]peak, and final velocity than CT (p < 0.05 for all parameters). All maximal cardiorespiratory variables observed during both tests were moderately to well correlated (e.g., r = 0.76, p = 0.001 for &OV0312;o2peak). Regarding ventilatory thresholds (VThs), all cardiorespiratory measurements were similar and well correlated between the 2 tests. Parasympathetic function was lower after 30-15IFT than after CT, as indicated by significantly longer HHRtau (81.9 +/- 18.2 vs. 60.5 +/- 19.5 for 30-15IFT and CT, respectively, p < 0.001) and lower HRV vagal-related indices (i.e., the root mean square of successive R-R intervals differences [rMSSD]: 4.1 +/- 2.4 and 7.0 +/- 4.9 milliseconds, p < 0.05). In conclusion, the 30-15IFT is accurate for assessing VThs and &OV0312;o2peak, but it alters postexercise parasympathetic function more than a continuous incremental protocol.
Resumo:
Current research and development of antigens for vaccination often center on purified recombinant proteins, viral subunits, synthetic oligopeptides or oligosaccharides, most of them suffering from being poorly immunogenic and subject to degradation. Hence, they call for efficient delivery systems and potent immunostimulants, jointly denoted as adjuvants. Particulate delivery systems like emulsions, liposomes, nanoparticles and microspheres may provide protection from degradation and facilitate the co-formulation of both the antigen and the immunostimulant. Synthetic double-stranded (ds) RNA, such as polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a mimic of viral dsRNA and, as such, a promising immunostimulant candidate for vaccines directed against intracellular pathogens. Poly(I:C) signaling is primarily dependent on Toll-like receptor 3 (TLR3), and on melanoma differentiation-associated gene-5 (MDA-5), and strongly drives cell-mediated immunity and a potent type I interferon response. However, stability and toxicity issues so far prevented the clinical application of dsRNAs as they undergo rapid enzymatic degradation and bear the potential to trigger undue immune stimulation as well as autoimmune disorders. This review addresses these concerns and suggests strategies to improve the safety and efficacy of immunostimulatory dsRNA formulations. The focus is on technological means required to lower the necessary dosage of poly(I:C), to target surface-modified microspheres passively or actively to antigen-presenting cells (APCs), to control their interaction with non-professional phagocytes and to modulate the resulting cytokine secretion profile.
Resumo:
Summary Cancer is a leading cause of morbidity and mortality in Western countries (as an example, colorectal cancer accounts for about 300'000 new cases and 200'000 deaths each year in Europe and in the USA). Despite that many patients with cancer have complete macroscopic clearance of their disease after resection, radiotherapy and/or chemotherapy, many of these patients develop fatal recurrence. Vaccination with immunogenic peptide tumor antigens has shown encouraging progresses in the last decade; immunotherapy might therefore constitute a fourth therapeutic option in the future. We dissect here and critically evaluate the numerous steps of reverse immunology, a forecast procedure to identify antigenic peptides from the sequence of a gene of interest. Bioinformatic algorithms were applied to mine sequence databases for tumor-specific transcripts. A quality assessment of publicly available sequence databanks allowed defining strengths and weaknesses of bioinformatics-based prediction of colon cancer-specific alternative splicing: new splice variants could be identified, however cancer-restricted expression could not be significantly predicted. Other sources of target transcripts were quantitatively investigated by polymerase chain reactions, as cancer-testis genes or reported overexpressed transcripts. Based on the relative expression of a defined set of housekeeping genes in colon cancer tissues, we characterized a precise procedure for accurate normalization and determined a threshold for the definition of significant overexpression of genes in cancers versus normal tissues. Further steps of reverse immunology were applied on a splice variant of the Melan¬A gene. Since it is known that the C-termini of antigenic peptides are directly produced by the proteasome, longer precursor and overlapping peptides encoded by the target sequence were synthesized chemically and digested in vitro with purified proteasome. The resulting fragments were identified by mass spectroscopy to detect cleavage sites. Using this information and based on the available anchor motifs for defined HLA class I molecules, putative antigenic peptides could be predicted. Their relative affinity for HLA molecules was confirmed experimentally with functional competitive binding assays and they were used to search patients' peripheral blood lymphocytes for the presence of specific cytolytic T lymphocytes (CTL). CTL clones specific for a splice variant of Melan-A could be isolated; although they recognized peptide-pulsed cells, they failed to lyse melanoma cells in functional assays of antigen recognition. In the conclusion, we discuss advantages and bottlenecks of reverse immunology and compare the technical aspects of this approach with the more classical procedure of direct immunology, a technique introduced by Boon and colleagues more than 10 years ago to successfully clone tumor antigens.
Resumo:
Constitutive activation of the nuclear factor-κ B (NF-κB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-κB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the atypical nuclear IκB protein IκB-ζ to be upregulated in ABC compared with germinal center B-cell-like (GCB) DLBCL primary patient samples. Knockdown of IκB-ζ by RNA interference was toxic to ABC but not to GCB DLBCL cell lines. Gene expression profiling after IκB-ζ knockdown demonstrated a significant downregulation of a large number of known NF-κB target genes, indicating an essential role of IκB-ζ in regulating a specific set of NF-κB target genes. To further investigate how IκB-ζ mediates NF-κB activity, we performed immunoprecipitations and detected a physical interaction of IκB-ζ with both p50 and p52 NF-κB subunits, indicating that IκB-ζ interacts with components of both the canonical and the noncanonical NF-κB pathway in ABC DLBCL. Collectively, our data demonstrate that IκB-ζ is essential for nuclear NF-κB activity in ABC DLBCL, and thus might represent a promising molecular target for future therapies.
Resumo:
Despite the limited research on the effects of altitude (or hypoxic) training interventions on team-sport performance, players from all around the world engaged in these sports are now using altitude training more than ever before. In March 2013, an Altitude Training and Team Sports conference was held in Doha, Qatar, to establish a forum of research and practical insights into this rapidly growing field. A round-table meeting in which the panellists engaged in focused discussions concluded this conference. This has resulted in the present position statement, designed to highlight some key issues raised during the debates and to integrate the ideas into a shared conceptual framework. The present signposting document has been developed for use by support teams (coaches, performance scientists, physicians, strength and conditioning staff) and other professionals who have an interest in the practical application of altitude training for team sports. After more than four decades of research, there is still no consensus on the optimal strategies to elicit the best results from altitude training in a team-sport population. However, there are some recommended strategies discussed in this position statement to adopt for improving the acclimatisation process when training/competing at altitude and for potentially enhancing sea-level performance. It is our hope that this information will be intriguing, balanced and, more importantly, stimulating to the point that it promotes constructive discussion and serves as a guide for future research aimed at advancing the bourgeoning body of knowledge in the area of altitude training for team sports.
Resumo:
Intracellular signaling in insect olfactory receptor neurons remains unclear, with both metabotropic and ionotropic components being discussed. Here, we investigated the role of heterotrimeric Go and Gi proteins using a combined behavioral, in vivo and in vitro approach. Specifically, we show that inhibiting Go in sensory neurons by pertussis toxin leads to behavioral deficits. We heterologously expressed the olfactory receptor dOr22a in human embryonic kidney cells (HEK293T). Stimulation with an odor led to calcium influx, which was amplified via calcium release from intracellular stores. Subsequent experiments indicated that the signaling was mediated by the Gβγ subunits of the heterotrimeric Go/i proteins. Finally, using in vivo calcium imaging, we show that Go and Gi contribute to odor responses both for the fast (phasic) as for the slow (tonic) response component. We propose a transduction cascade model involving several parallel processes, in which the metabotropic component is activated by Go and Gi , and uses Gβγ.
NLRC5 deficiency selectively impairs MHC class I- dependent lymphocyte killing by cytotoxic T cells.
Resumo:
Nucleotide-binding oligomerization domain-like receptors (NLRs) are intracellular proteins involved in innate-driven inflammatory responses. The function of the family member NLR caspase recruitment domain containing protein 5 (NLRC5) remains a matter of debate, particularly with respect to NF-κB activation, type I IFN, and MHC I expression. To address the role of NLRC5, we generated Nlrc5-deficient mice (Nlrc5(Δ/Δ)). In this article we show that these animals exhibit slightly decreased CD8(+) T cell percentages, a phenotype compatible with deregulated MHC I expression. Of interest, NLRC5 ablation only mildly affected MHC I expression on APCs and, accordingly, Nlrc5(Δ/Δ) macrophages efficiently primed CD8(+) T cells. In contrast, NLRC5 deficiency dramatically impaired basal expression of MHC I in T, NKT, and NK lymphocytes. NLRC5 was sufficient to induce MHC I expression in a human lymphoid cell line, requiring both caspase recruitment and LRR domains. Moreover, endogenous NLRC5 localized to the nucleus and occupied the proximal promoter region of H-2 genes. Consistent with downregulated MHC I expression, the elimination of Nlrc5(Δ/Δ) lymphocytes by cytotoxic T cells was markedly reduced and, in addition, we observed low NLRC5 expression in several murine and human lymphoid-derived tumor cell lines. Hence, loss of NLRC5 expression represents an advantage for evading CD8(+) T cell-mediated elimination by downmodulation of MHC I levels-a mechanism that may be exploited by transformed cells. Our data show that NLRC5 acts as a key transcriptional regulator of MHC I in lymphocytes and support an essential role for NLRs in directing not only innate but also adaptive immune responses.
Resumo:
This phase I trial was designed to develop a new effective and well-tolerated regimen for patients with aggressive B cell lymphoma not eligible for front-line anthracycline-based chemotherapy or aggressive second-line treatment strategies. The combination of rituximab (375 mg/m(2) on day 1), bendamustine (70 mg/m(2) on days 1 and 2), and lenalidomide was tested with a dose escalation of lenalidomide at three dose levels (10, 15, or 20 mg/day) using a 3 + 3 design. Courses were repeated every 4 weeks. The recommended dose was defined as one level below the dose level identifying ≥2/6 patients with a dose-limiting toxicity (DLT) during the first cycle. Thirteen patients were eligible for analysis. Median age was 77 years. WHO performance status was 0 or 1 in 12 patients. The Charlson Comorbidity Index showed relevant comorbidities in all patients. Two DLTs occurred at the second dose level (15 mg/day) within the first cycle: one patient had prolonged grade 3 neutropenia, and one patient experienced grade 4 cardiac adverse event (myocardial infarction). Additional grade 3 and 4 toxicities were as follows: neutropenia (31 %), thrombocytopenia (23 %), cardiac toxicity (31 %), fatigue (15 %), and rash (15 %). The dose of lenalidomide of 10 mg/day was recommended for a subsequent phase II in combination with rituximab 375 mg/m(2) on day 1 and bendamustine 70 mg/m(2) on days 1 and 2.
Resumo:
We previously showed that exposure of 3D organotypic rat brain cell cultures to 1mM 2-methylcitrate (2-MCA) or 3-hydroxyglutarate (3- OHGA) every 12h over three days (DIV11-DIV14) results in ammonium accumulation and cell death. The aim of this study was to define the time course (every 24h) of the observed effects. Ammonium in culture medium already increased at DIV12 staying stable on the following days under 3-OHGA exposure, while it increased consecutively up to much higher levels under 2-MCA exposure. Lactate increase and glucose decrease were observed from DIV13 and DIV14, respectively. We conclude that ammonium accumulation precedes alterations of energy metabolism. As observed by immunohistochemistry glial cells were the predominant dying cells. Immunoblotting and immunohistochemistry with cell death specific markers (caspase-3, alpha-fodrin, LC3) showed that 2-MCA exposure significantly increased apoptosis on DIV14, but did not alter autophagy or necrosis. In contrast, 3-OHGA exposure substantially increased necrosis already from DIV13, while no change was observed for apoptosis and autophagy. In conclusion, ammonium accumulation, secondary disturbance of energy metabolism and glial cell death are involved in the neuropathogenesis ofmethylmalonic aciduria and glutaric aciduria type I. Interestingly, brain cells are dying by necrosis under 3-OHGA exposure and by apoptosis under 2-MCA exposure.
Resumo:
MHC class II (MHCII) genes are transactivated by the NOD-like receptor (NLR) family member CIITA, which is recruited to SXY enhancers of MHCII promoters via a DNA-binding "enhanceosome" complex. NLRC5, another NLR protein, was recently found to control transcription of MHC class I (MHCI) genes. However, detailed understanding of NLRC5's target gene specificity and mechanism of action remained lacking. We performed ChIP-sequencing experiments to gain comprehensive information on NLRC5-regulated genes. In addition to classical MHCI genes, we exclusively identified novel targets encoding non-classical MHCI molecules having important functions in immunity and tolerance. ChIP-sequencing performed with Rfx5(-/-) cells, which lack the pivotal enhanceosome factor RFX5, demonstrated its strict requirement for NLRC5 recruitment. Accordingly, Rfx5-knockout mice phenocopy Nlrc5 deficiency with respect to defective MHCI expression. Analysis of B cell lines lacking RFX5, RFXAP, or RFXANK further corroborated the importance of the enhanceosome for MHCI expression. Although recruited by common DNA-binding factors, CIITA and NLRC5 exhibit non-redundant functions, shown here using double-deficient Nlrc5(-/-)CIIta(-/-) mice. These paradoxical findings were resolved by using a "de novo" motif-discovery approach showing that the SXY consensus sequence occupied by NLRC5 in vivo diverges significantly from that occupied by CIITA. These sequence differences were sufficient to determine preferential occupation and transactivation by NLRC5 or CIITA, respectively, and the S box was found to be the essential feature conferring NLRC5 specificity. These results broaden our knowledge on the transcriptional activities of NLRC5 and CIITA, revealing their dependence on shared enhanceosome factors but their recruitment to distinct enhancer motifs in vivo. Furthermore, we demonstrated selectivity of NLRC5 for genes encoding MHCI or related proteins, rendering it an attractive target for therapeutic intervention. NLRC5 and CIITA thus emerge as paradigms for a novel class of transcriptional regulators dedicated for transactivating extremely few, phylogenetically related genes.
Resumo:
BACKGROUND: Prognostic models have been developed to predict survival of patients with newly diagnosed glioblastoma (GBM). To improve predictions, models should be updated with information at the recurrence. We performed a pooled analysis of European Organization for Research and Treatment of Cancer (EORTC) trials on recurrent glioblastoma to validate existing clinical prognostic factors, identify new markers, and derive new predictions for overall survival (OS) and progression free survival (PFS).¦METHODS: Data from 300 patients with recurrent GBM recruited in eight phase I or II trials conducted by the EORTC Brain Tumour Group were used to evaluate patient's age, sex, World Health Organisation (WHO) performance status (PS), presence of neurological deficits, disease history, use of steroids or anti-epileptics and disease characteristics to predict PFS and OS. Prognostic calculators were developed in patients initially treated by chemoradiation with temozolomide.¦RESULTS: Poor PS and more than one target lesion had a significant negative prognostic impact for both PFS and OS. Patients with large tumours measured by the maximum diameter of the largest lesion (⩾42mm) and treated with steroids at baseline had shorter OS. Tumours with predominant frontal location had better survival. Age and sex did not show independent prognostic values for PFS or OS.¦CONCLUSIONS: This analysis confirms performance status but not age as a major prognostic factor for PFS and OS in recurrent GBM. Patients with multiple and large lesions have an increased risk of death. With these data prognostic calculators with confidence intervals for both medians and fixed time probabilities of survival were derived.