21 resultados para Game-based learning model

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying the geographic distribution of populations is a basic, yet crucial step in many fundamental and applied ecological projects, as it provides key information on which many subsequent analyses depend. However, this task is often costly and time consuming, especially where rare species are concerned and where most sampling designs generally prove inefficient. At the same time, rare species are those for which distribution data are most needed for their conservation to be effective. To enhance fieldwork sampling, model-based sampling (MBS) uses predictions from species distribution models: when looking for the species in areas of high habitat suitability, chances should be higher to find them. We thoroughly tested the efficiency of MBS by conducting an important survey in the Swiss Alps, assessing the detection rate of three rare and five common plant species. For each species, habitat suitability maps were produced following an ensemble modeling framework combining two spatial resolutions and two modeling techniques. We tested the efficiency of MBS and the accuracy of our models by sampling 240 sites in the field (30 sitesx8 species). Across all species, the MBS approach proved to be effective. In particular, the MBS design strictly led to the discovery of six sites of presence of one rare plant, increasing chances to find this species from 0 to 50%. For common species, MBS doubled the new population discovery rates as compared to random sampling. Habitat suitability maps coming from the combination of four individual modeling methods predicted well the species' distribution and more accurately than the individual models. As a conclusion, using MBS for fieldwork could efficiently help in increasing our knowledge of rare species distribution. More generally, we recommend using habitat suitability models to support conservation plans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Game theory describes and analyzes strategic interaction. It is usually distinguished between static games, which are strategic situations in which the players choose only once as well as simultaneously, and dynamic games, which are strategic situations involving sequential choices. In addition, dynamic games can be further classified according to perfect and imperfect information. Indeed, a dynamic game is said to exhibit perfect information, whenever at any point of the game every player has full informational access to all choices that have been conducted so far. However, in the case of imperfect information some players are not fully informed about some choices. Game-theoretic analysis proceeds in two steps. Firstly, games are modelled by so-called form structures which extract and formalize the significant parts of the underlying strategic interaction. The basic and most commonly used models of games are the normal form, which rather sparsely describes a game merely in terms of the players' strategy sets and utilities, and the extensive form, which models a game in a more detailed way as a tree. In fact, it is standard to formalize static games with the normal form and dynamic games with the extensive form. Secondly, solution concepts are developed to solve models of games in the sense of identifying the choices that should be taken by rational players. Indeed, the ultimate objective of the classical approach to game theory, which is of normative character, is the development of a solution concept that is capable of identifying a unique choice for every player in an arbitrary game. However, given the large variety of games, it is not at all certain whether it is possible to device a solution concept with such universal capability. Alternatively, interactive epistemology provides an epistemic approach to game theory of descriptive character. This rather recent discipline analyzes the relation between knowledge, belief and choice of game-playing agents in an epistemic framework. The description of the players' choices in a given game relative to various epistemic assumptions constitutes the fundamental problem addressed by an epistemic approach to game theory. In a general sense, the objective of interactive epistemology consists in characterizing existing game-theoretic solution concepts in terms of epistemic assumptions as well as in proposing novel solution concepts by studying the game-theoretic implications of refined or new epistemic hypotheses. Intuitively, an epistemic model of a game can be interpreted as representing the reasoning of the players. Indeed, before making a decision in a game, the players reason about the game and their respective opponents, given their knowledge and beliefs. Precisely these epistemic mental states on which players base their decisions are explicitly expressible in an epistemic framework. In this PhD thesis, we consider an epistemic approach to game theory from a foundational point of view. In Chapter 1, basic game-theoretic notions as well as Aumann's epistemic framework for games are expounded and illustrated. Also, Aumann's sufficient conditions for backward induction are presented and his conceptual views discussed. In Chapter 2, Aumann's interactive epistemology is conceptually analyzed. In Chapter 3, which is based on joint work with Conrad Heilmann, a three-stage account for dynamic games is introduced and a type-based epistemic model is extended with a notion of agent connectedness. Then, sufficient conditions for backward induction are derived. In Chapter 4, which is based on joint work with Jérémie Cabessa, a topological approach to interactive epistemology is initiated. In particular, the epistemic-topological operator limit knowledge is defined and some implications for games considered. In Chapter 5, which is based on joint work with Jérémie Cabessa and Andrés Perea, Aumann's impossibility theorem on agreeing to disagree is revisited and weakened in the sense that possible contexts are provided in which agents can indeed agree to disagree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à-vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: The aim of this study was to evaluate a new pedagogical approach in teaching fluid, electrolyte and acid-base pathophysiology in undergraduate students. METHODS: This approach comprises traditional lectures, the study of clinical cases on the web and a final interactive discussion of these cases in the classroom. When on the web, the students are asked to select laboratory tests that seem most appropriate to understand the pathophysiological condition underlying the clinical case. The percentage of students having chosen a given test is made available to the teacher who uses it in an interactive session to stimulate discussion with the whole class of students. The same teacher used the same case studies during 2 consecutive years during the third year of the curriculum. RESULTS: The majority of students answered the questions on the web as requested and evaluated positively their experience with this form of teaching and learning. CONCLUSIONS: Complementing traditional lectures with online case-based studies and interactive group discussions represents, therefore, a simple means to promote the learning and the understanding of complex pathophysiological mechanisms. This simple problem-based approach to teaching and learning may be implemented to cover all fields of medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapport de synthèse : L'article qui fait l'objet de ma thèse évalue une nouvelle approche pédagogique pour l'apprentissage de certains chapitres de physiopathologie. Le dispositif pédagogique se base sur l'alternance d'apprentissage ex-cathedra et de l'utilisation d'un site web comprenant des vignettes cliniques. Lors de la consultation de ces-dernières, l'étudiant est invité à demander des examens de laboratoire dont il pourrait justifier la pertinence selon le cas clinique étudié. La nouveauté du procédé réside dans le fait que, préalablement à son cours ex-cathedra, l'enseignant peut consulter les statistiques de demandes de laboratoire et ainsi orienter son cours selon les éléments mal compris par les étudiants. A la suite du cours ex-cathedra, les étudiants peuvent consulter sur internet la vignette clinique complète avec des explications. A l'issue de tout le cours, une évaluation auprès des étudiants a été conduite. Le procédé a été mis en place durant deux années consécutives et l'article en discute notamment les résultats. Nous avons pu conclure que cette méthode innovatrice d'enseignement amène les étudiants à mieux se préparer pour les cours ex-cathedra tout en permettant à l'enseignant d'identifier plus précisément quelles thématiques étaient difficiles pour les étudiants et donc d'ajuster au mieux son cours. Mon travail de thèse a consisté à créer ce dispositif d'apprentissage, à créer l'application web des vignettes cliniques et à l'implanter durant deux années consécutives. J'ai ensuite analysé les données des évaluations et écrit l'article que j'ai présenté à la revue 'Medical Teacher'. Après quelques corrections et précisions demandées par le comité de lecture, l'article a été accepté et publié. Ce travail a débouché sur une seconde version de l'application web qui est actuellement utilisée lors du module 3.1 de 3è année à l'Ecole de Médecine à Lausanne. Summary : Since the early days of sexual selection, our understanding of the selective forces acting on males and females during reproduction has increased remarkably. However, despite a long tradition of experimental and theoretical work in this field and relentless effort, numerous questions remain unanswered and many results are conflicting. Moreover, the interface between sexual selection and conservation biology has to date received little attention, despite existing evidence for its importance. In the present thesis, I first used an empirical approach to test various sexual selection hypotheses in a population of whitefish of central Switzerland. This precise population is characterized by a high prevalence of gonadal alterations in males. In particular, I challenged the hypothesis that whitefish males displaying peculiar gonadal features are of lower genetic quality than other seemingly normal males. Additionally, I also worked on identifying important determinant of sperm behavior. During a second theoretical part of my work, which is part of a larger project on the evolution of female mate preferences in harvested fish populations, I developed an individual-based simulation model to estimate how different mate discrimination costs affect the demographical behavior of fish populations and the evolutionary trajectories of female mate preferences. This latter work provided me with some insight on a recently published article addressing the importance of sexual selection for harvesting-induced evolution. I built upon this insight in a short perspective paper. In parallel, I let some methodological questions drive my thoughts, and wrote an essay about possible synergies between the biological, the philosophical and the statistical approach to biological questions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an approach to teaching evidence-based management (EBMgt) that trains future managers how to produce local evidence. Local evidence is causally interpretable data, collected on-site in companies to address a specific business problem. Our teaching method is a variant of problem-based learning, a method originally developed to teach evidence-based medicine. Following this method, students learn an evidence-based problem-solving cycle for addressing actual business cases. Executing this cycle, students use and produce scientific evidence through literature searches and the design of local, experimental tests of causal hypotheses. We argue the value of teaching EBMgt with a focus on producing local evidence, how it can be taught, and what can be taught. We conclude by outlining our contribution to the literature on teaching EBMgt and by discussing limitations of our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Games are powerful and engaging. On average, one billion people spend at least 1 hour a day playing computer and videogames. This is even more true with the younger generations. Our students have become the < digital natives >, the < gamers >, the < virtual generation >. Research shows that those who are most at risk for failure in the traditional classroom setting, also spend more time than their counterparts, using video games. They might strive, given a different learning environment. Educators have the responsibility to align their teaching style to these younger generation learning styles. However, many academics resist the use of computer-assisted learning that has been "created elsewhere". This can be extrapolated to game-based teaching: even if educational games were more widely authored, their adoption would still be limited to the educators who feel a match between the authored games and their own beliefs and practices. Consequently, game-based teaching would be much more widespread if teachers could develop their own games, or at least customize them. Yet, the development and customization of teaching games are complex and costly. This research uses a design science methodology, leveraging gamification techniques, active and cooperative learning theories, as well as immersive sandbox 3D virtual worlds, to develop a method which allows management instructors to transform any off-the-shelf case study into an engaging collaborative gamified experience. This method is applied to marketing case studies, and uses the sandbox virtual world of Second Life. -- Les jeux sont puissants et motivants, En moyenne, un milliard de personnes passent au moins 1 heure par jour jouer à des jeux vidéo sur ordinateur. Ceci se vérifie encore plus avec les jeunes générations, Nos étudiants sont nés à l'ère du numérique, certains les appellent des < gamers >, d'autres la < génération virtuelle >. Les études montrent que les élèves qui se trouvent en échec scolaire dans les salles de classes traditionnelles, passent aussi plus de temps que leurs homologues à jouer à des jeux vidéo. lls pourraient potentiellement briller, si on leur proposait un autre environnement d'apprentissage. Les enseignants ont la responsabilité d'adapter leur style d'enseignement aux styles d'apprentissage de ces jeunes générations. Toutefois, de nombreux professeurs résistent lorsqu'il s'agit d'utiliser des contenus d'apprentissage assisté par ordinateur, développés par d'autres. Ceci peut être extrapolé à l'enseignement par les jeux : même si un plus grand nombre de jeux éducatifs était créé, leur adoption se limiterait tout de même aux éducateurs qui perçoivent une bonne adéquation entre ces jeux et leurs propres convictions et pratiques. Par conséquent, I'enseignement par les jeux serait bien plus répandu si les enseignants pouvaient développer leurs propres jeux, ou au moins les customiser. Mais le développement de jeux pédagogiques est complexe et coûteux. Cette recherche utilise une méthodologie Design Science pour développer, en s'appuyant sur des techniques de ludification, sur les théories de pédagogie active et d'apprentissage coopératif, ainsi que sur les mondes virtuels immersifs < bac à sable > en 3D, une méthode qui permet aux enseignants et formateurs de management, de transformer n'importe quelle étude de cas, provenant par exemple d'une centrale de cas, en une expérience ludique, collaborative et motivante. Cette méthode est appliquée aux études de cas Marketing dans le monde virtuel de Second Life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One third of all stroke survivors develop post-stroke depression (PSD). Depressive symptoms adversely affect rehabilitation and significantly increase risk of death in the post-stroke period. One of the theoretical views on the determinants of PSD focuses on psychosocial factors like disability and social support. Others emphasize biologic mechanisms such as disruption of biogenic amine neurotransmission and release of proinflammatory cytokines. The "lesion location" perspective attempts to establish a relationship between localization of stroke and occurrence of depression, but empirical results remain contradictory. These divergences are partly related to the fact that neuroimaging methods, unlike neuropathology, are not able to assess precisely the full extent of stroke-affected areas and do not specify the different types of vascular lesions. We provide here an overview of the known phenomenological profile and current pathogenic hypotheses of PSD and present neuropathological data challenging the classic "single-stroke"-based neuroanatomical model of PSD. We suggest that vascular burden due to the chronic accumulation of small macrovascular and microvascular lesions may be a crucial determinant of the development and evolution of PSD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Static incubation tests, where microcapsules and beads are contacted with polymer and protein solutions, have been developed for the characterization of permselective materials applied for bioartificial organs and drug delivery. A combination of polymer ingress, detected by size-exclusion chromatography, and protein ingress/ egress, assessed by gel electrophoresis, provides information regarding the diffusion kinetics, molar mass cutoff(MMCO) and permeability. This represents an improvement over existing permeability measurements that are based on the diffusion of a single type of solute. Specifically, the permeability of capsules based on alginate, cellulose sulfate, polymethylene-co-guanidine were characterized as a function of membrane thickness. Solid alginate beads were also evaluated. The MMCO of these capsules was estimated to be between 80 and 90 kDa using polymers, and between 116-150 kDa with proteins. Apparently, the globular shape of the proteins (radius of gyration (Rg) of 4.2-4.6 nm) facilitates their passage through the membrane, comparatively to the polysaccharide coil conformation (Rg of 6.5-8.3 nm). An increase of the capsule membrane thickness reduced these values. The MMCO of the beads, which do not have a membrane limiting their permselective properties, was higher, between 110 and 200 kDa with dextrans, and between 150 and 220 kDa with proteins. Therefore, although the permeability estimated with biologically relevant molecules is generally higher due to their lower radius of gyration, both the MMCO of synthetic and natural watersoluble polymers correlate well, and can be used as in vitro metrics for the immune protection ability of microcapsules and microbeads. This article shows, to the authors' knowledge, the first reported concordance between permeability measures based on model natural and biological macromolecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models predicting species spatial distribution are increasingly applied to wildlife management issues, emphasising the need for reliable methods to evaluate the accuracy of their predictions. As many available datasets (e.g. museums, herbariums, atlas) do not provide reliable information about species absences, several presence-only based analyses have been developed. However, methods to evaluate the accuracy of their predictions are few and have never been validated. The aim of this paper is to compare existing and new presenceonly evaluators to usual presence/absence measures. We use a reliable, diverse, presence/absence dataset of 114 plant species to test how common presence/absence indices (Kappa, MaxKappa, AUC, adjusted D-2) compare to presenceonly measures (AVI, CVI, Boyce index) for evaluating generalised linear models (GLM). Moreover we propose a new, threshold-independent evaluator, which we call "continuous Boyce index". All indices were implemented in the B10MAPPER software. We show that the presence-only evaluators are fairly correlated (p > 0.7) to the presence/absence ones. The Boyce indices are closer to AUC than to MaxKappa and are fairly insensitive to species prevalence. In addition, the Boyce indices provide predicted-toexpected ratio curves that offer further insights into the model quality: robustness, habitat suitability resolution and deviation from randomness. This information helps reclassifying predicted maps into meaningful habitat suitability classes. The continuous Boyce index is thus both a complement to usual evaluation of presence/absence models and a reliable measure of presence-only based predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal dispersal in a fragmented landscape depends on the complex interaction between landscape structure and animal behavior. To better understand how individuals disperse, it is important to explicitly represent the properties of organisms and the landscape in which they move. A common approach to modelling dispersal includes representing the landscape as a grid of equal sized cells and then simulating individual movement as a correlated random walk. This approach uses a priori scale of resolution, which limits the representation of all landscape features and how different dispersal abilities are modelled. We develop a vector-based landscape model coupled with an object-oriented model for animal dispersal. In this spatially explicit dispersal model, landscape features are defined based on their geographic and thematic properties and dispersal is modelled through consideration of an organism's behavior, movement rules and searching strategies (such as visual cues). We present the model's underlying concepts, its ability to adequately represent landscape features and provide simulation of dispersal according to different dispersal abilities. We demonstrate the potential of the model by simulating two virtual species in a real Swiss landscape. This illustrates the model's ability to simulate complex dispersal processes and provides information about dispersal such as colonization probability and spatial distribution of the organism's path.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical studies indicate that the transition to parenthood is influenced by an individual's peer group. To study the mechanisms creating interdepen- dencies across individuals' transition to parenthood and its timing we apply an agent-based simulation model. We build a one-sex model and provide agents with three different characteristics regarding age, intended education and parity. Agents endogenously form their network based on social closeness. Network members then may influence the agents' transition to higher parity levels. Our numerical simulations indicate that accounting for social inter- actions can explain the shift of first-birth probabilities in Austria over the period 1984 to 2004. Moreover, we apply our model to forecast age-specific fertility rates up to 2016.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal dispersal in a fragmented landscape depends on the complex interaction between landscape structure and animal behavior. To better understand how individuals disperse, it is important to explicitly represent the properties of organisms and the landscape in which they move. A common approach to modelling dispersal includes representing the landscape as a grid of equal sized cells and then simulating individual movement as a correlated random walk. This approach uses a priori scale of resolution, which limits the representation of all landscape features and how different dispersal abilities are modelled. We develop a vector-based landscape model coupled with an object-oriented model for animal dispersal. In this spatially explicit dispersal model, landscape features are defined based on their geographic and thematic properties and dispersal is modelled through consideration of an organism's behavior, movement rules and searching strategies (such as visual cues). We present the model's underlying concepts, its ability to adequately represent landscape features and provide simulation of dispersal according to different dispersal abilities. We demonstrate the potential of the model by simulating two virtual species in a real Swiss landscape. This illustrates the model's ability to simulate complex dispersal processes and provides information about dispersal such as colonization probability and spatial distribution of the organism's path