119 resultados para GONDWANA MARGIN
em Université de Lausanne, Switzerland
Resumo:
The European Variscan and Alpine mountain chains are collisional orogens, and are built up of pre-Variscan ``building blocks'' which, in most. cases, originated at the Gondwana margin. Such pre-Variscan elements were part of a pre-Ordovician archipelago-like continental ribbon in the former eastern prolongation of Avalonia, and their present-day distribution resulted from juxtaposition through Variscan and/or Alpine tectonic evolution. The well-known nomenclatures applied to these mountain chains are the mirror of Variscan resp. Alpine organization. It is the aim of this paper to present a terminology taking into account their pre-Variscan evolution at the Gondwana margin. They may contain relics of volcanic islands with pieces of Cadomian crust, relics of volcanic arc settings, and accretionary wedges, which were separated from Gondwana by initial stages of Rheic ocean. opening. After a short-lived Ordovician orogenic event and amalgamation of these elements at the Gondwanan margin, the still continuing Gondwana-directed subduction triggered the formation of Ordovician Al-rich granitoids and; the latest Ordovician opening of Palaeo-Tethys. An example from the Alps (External Massifs) illustrates the gradual reworking of Gondwana-derived, pre-Variscan. elements during the Variscan and Alpine/ Tertiary orogenic cycles. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Samoborska Gora Mts. is situated within the westernmost part of the Zagorje-Mid-Transdanubian zone of the Internal Dinarides. The Samoborska Gora Mts. predominantly consists of Permian unmetamorphosed siliciclastic sediments and evaporites, overlain by Lower Triassic sediments. Rude mineralisation is hosted by Permian siliciclastic sediments, below gypsum and anhydrite strata. The central part of the deposit consists of a 1.5 km long stratabound mineralisation, grading laterally into ferruginous sandstone and protruding vertically into a gypsum-anhydrite layer. Siderite-polysulphide-barite-quartz veins are located below the stratabound mineralisation. The stratiform part of the deposit is situated above the stratabound and consists of haematite layer with barite concretions and veinlets. Late stage galena-barite veins overprint earlier types of mineralisation. The Rude ore deposit was generated by predominantly NaCl +/- CaCl(2)-H(2)O solutions. Detrital quartz from stratiform mineralisation contains fluid inclusions with salinities between 7 and 11 wt. % NaCl equ., homogenizing between 150 degrees C to 230 degrees C. Stratabound/siderite-polysulphide-barite-quartz vein type mineralisation was derived from solutions with salinities between 5 and 19 wt. % NaCl equ., homogenizing between 60 degrees C and 160 degrees C, while late stage galenabarite veins were precipitated from solutions with salinities between 11 and 16 wt. % NaCl equ., homogenizing between 100 degrees C to 140 degrees C. Fluid inclusion bulk leachate chemistry recorded Na(+)> Mg(2+)>K(+)>Ca(2+)>Li(+) and Cl-> SO(4)(2-) ions. Sulphur isotope composition of barites and overlying gypsum stems from Permian seawater sulphate, supported by increased Br(-) content, which follows successively the seawater evaporation line. The sulphur isotopic composition of sulphides varies between -0.2 and + 12.5 parts per thousand , as a result of thermal reduction of Permian marine sulphate. Ore-forming fluids were produced by hydrothermal convective cells (reflux brine model), and were derived primarily from Permian seawater, modified by evaporation and interaction with Permian sedimentary rocks. Rude deposits in Samoborska Gora Mts. may be declared as a prototype of the Permian siderite-polysulphide-barite deposits (products of rifting along the passive Gondwana margin), in the Inner Dinarides, and their equivalents extending northeastward into the Zagorje-Mid-Transdanubian Zone and the Gemerides, and southeastward to the Hellenide-Albanides.
Resumo:
- The lower member of the Alwa Formation (Lower Olenekian), found within the Ba'id Exotic in the Oman Mountains (Sultanate of Oman), consists of ammonoid-bearing, pelagic limestones that were deposited on an isolated, drowned carbonate platform on the Neotethyan Gondwana margin. The strata contain a variety of unusual carbonate textures and features, including thrombolites, Frutexites-bearing microbialites that contain synsedimentary cements, matrix-free breccias surrounded by isopachous calcite cement, and fissures and cavities filled with large botryoidal cements. Thrombolites are found throughout the study interval, and occur as 0.5-1.0 m thick lenses or beds that contain laterally laterally-linked stromatactis cavities. The Frutexites-bearing microbialites occur less frequently, and also form lenses or beds, up to 30 cm thick; the microbialites may be laminated, and often developed on hardgrounds. In addition, the Frutexites-bearing microbialites also contain synsedimentary calcite cement crusts and botryoids (typically <1 cm thick) that harbour layers or pockets of what appear to be bacterial sheaths and coccoids, and are indicative of biologically mediated precipitation of the cement bodies. Slumping following lithification led to fracturing of the limestone and the precipitation of large, botryoidal aragonite cements in fissures that cut across the primary fabric. Environmental conditions, specifically palaeoxygenation and the degree of calcium carbonate supersaturation, likely controlled whether the thrombolites (high level of calcium carbonate supersaturation associated with vertical mixing of water masses and dysoxic conditions) or Frutexites-bearing microbialites (low level of calcium carbonate supersaturation associated with anoxic conditions and deposition below a stable chemocline) formed. The results of this study point to continued environmental stress in the region during the Early Triassic that likely contributed to the uneven recovery from the Permian-Triassic mass extinction.
Resumo:
Prior to their Alpine overprinting, most of the pre-Mesozoic basement areas in Alpine orogenic structures shared a complex evolution, starting with Neoproterozoic sediments that are thought to have received detrital input from both West and East Gondwanan cratonic sources. A subsequent Neoproterozoic-Cambrian active margin setting at the Gondwana margin was followed by a Cambrian-Ordovician rifting period, including an Ordovician cordillera-like active margin setting. During the Late Ordovician and Silurian periods, the future Alpine domains recorded crustal extension along the Gondwana margin, announcing the future opening of the Paleotethys oceanic domain. Most areas then underwent Variscan orogenic events, including continental subduction and collisions with Avalonian-type basement areas along Laurussia and the juxtaposition and the duplication of terrane assemblages during strike slip, accompanied by contemporaneous crustal shortening and the subduction of Paleotethys under Laurussia. Thereafter, the final Pangea assemblage underwent Triassic and Jurassic extension, followed by Tertiary shortening, and leading to the buildup of the Alpine mountain chain. Recent plate-tectonic reconstructions place the Alpine domains in their supposed initial Cambrian-Ordovician positions in the eastern part of the Gondwana margin, where a stronger interference with the Chinese blocks is proposed, at least from the Ordovician onward. For the Visean time of the Variscan continental collision, the distinction of the former tectonic lower-plate situation is traceable but becomes blurred through the subsequent oblique subduction of Paleotethys under Laurussia accompanied by large-scale strike slip. Since the Pennsylvanian, this global collisional scenario has been replaced by subsequent and ongoing shortening and strike slip under rising geothermal conditions, and all of this occurred before all these puzzle elements underwent the complex Alpine reorganization.
Resumo:
In the general discussion on the Variscan evolution of central Europe the pre-Mesozoic basement of the Alps is, in many cases, only included with hesitation. Relatively well-preserved from Alpine metamorphism, the Alpine External massifs can serve as an excellent example of evolution of the Variscan basement, including the earliest Gondwana-derived microcontinents with Cadomian relics. Testifying to the evolution at the Gondwana margin, at least since the Cambrian, such pieces took part in the birth of the Rheic Ocean. After the separation of Avalonia, the remaining Gondwana border was continuously transformed through crustal extension with contemporaneous separation of continental blocks composing future Pangea, but the opening of Palaeotethys had only a reduced significance since the Devonian. The Variscan evolution in the External domain is characterised by an early HP-evolution with subsequent granulitic decompression melts. During Visean crustal shortening, the areas of future formation of migmatites and intrusion of monzodioritic magmas in a general strike-slip regime, were probably in a lower plate situation, whereas the so called monometamorphic areas may have been in an upper plate position of the nappe pile. During the Latest Carboniferous, the emplacement of the youngest granites was associated with the strike-slip faulting and crustal extension at lower crustal levels, whereas, at the surface, detrital sediments accumulated in intramontaneous transtensional basins on a strongly eroded surface. To cite this article: J.R von Raumer et al., C. R. Geoscience 341 (2009). (C) 2008 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
New plate-tectonic reconstructions of the Gondwana margin suggest that the location of Gondwana-derived terranes should not only be guided by the models, but should also consider the possible detrital input from some Asian blocks (Hunia), supposed to have been located along the Cambrian Gondwana margin, and accreted in the Silurian to the North-Chinese block. Consequently, the Gondwana margin has to be subdivided into a more western domain, where the future Avalonian blocks will be separated from Gondwana by the opening Rheic Ocean, whereas in its eastern continuation, hosting the future basement areas of Central Europe, different periods of crustal extension should be distinguished. Instead of applying a rather cylindrical model, it is supposed that crustal extension follows a much more complex pattern, where local back-arcs or intra-continental rifts are involved. Guided by the age data of magmatic rocks and the pattern of subsidence curves, the following extensional events can be distinguished: During the early to middle Cambrian, a back-arc setting guided the evolution at the Gondwana margin. Contemporaneous intra-continental rift basins developed at other places related to a general post-PanAfrican extensional phase affecting Africa Upper Cambrian formation of oceanic crust is manifested in the Chamrousse area, and may have lateral cryptic relics preserved in other places. This is regarded as the oceanisation of some marginal basins in a context of back-arc rifting. These basins were closed in a mid-Ordovician tectonic phase, related to the subduction of buoyant material (mid-ocean ridge?) Since the Early Ordovician, a new phase of extension is observed, accompanied by a large-scale volcanic activity, erosion of the rift shoulders generated detritus (Armorican Quartzite) and the rift basins collected detrital zircons from a wide hinterland. This phase heralded the opening of Palaeotethys, but it failed due to the Silurian collision (Eo-Variscan phase) of an intra-oceanic arc with the Gondwana margin. During this time period, at the eastern wing of the Gondwana margin begins the drift of the future Hunia microcontinents, through the opening of an eastern prolongation of the already existing Rheic Ocean. The passive margin of the remaining Gondwana was composed of the Galatian superterranes, constituents of the future Variscan basement areas. Remaining under the influence of crustal extension, they will start their drift to Laurussia since the earliest Devonian during the opening of the Palaeotethys Ocean. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A high-resolution U-Pb zircon geochronological study of plutonic units along the south Peruvian margin between 17 degrees and 18 degrees S allows the integration of the geochemical, geodynamic and tectonic evolution of this part of the Andean margin. This study focuses on the composite Jurassic-early Cretaceous Ilo Batholith that was emplaced along the southern Peruvian coast during two episodes of intrusive magmatism; a first period between 173 and 152 Ma (with a peak in magmatic activity between roughly 168 and 162 Ma) and a second period between 110 and 106 Ma. Emplacement of the Jurassic part of the composite Ilo Batholith shortly post-dated the accumulation of the volcanosedimentary succession it intruded (Chocolate formation), which allows to estimate a subsidence rate for this unit of similar to 3.5 km/Ma. The emplacement of the main peak of Jurassic plutonism of the Ilo Batholith was also closely coeval with widespread and repeated slumping (during deposition of the Cachios Formation) in the back-arc region, suggesting a common causal link between these phenomena, which is discussed in the context of an observed 100 km trenchward arc migration at similar to 175 Ma, and the relation with extensional tectonics that prevailed along the Central Andean margin during Pangaea break-up. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Recent detailed studies on the Batain nappes (northeast coast of Oman), which represent a special part of the so-called `Oman Exotics', have led to a better understanding of the Neotethyan geodynamic evolution. The Batain Exotics bear witness to volcanic activity, sea-level changes, tectonic instability, rifting and oceanization along the Eastern Oman margin during Late Palaeozoic and Mesozoic times. They allow definition of the Batain basin as an aborted Permian branch of Neotethys. This marine basin was created in Early Permian times extending southward to the East African/Madagascar region and was linked to the Karoo rift system. The presented revised classification of the Batain nappes considers the Batain basin to be no longer a part of the Hawasina basin and the Neotethyan mat-gin proper. We attribute the Batain basin to a Mozambique-Sornali-Masirah rift system (Somoma). This system started in Early Permian, times, creating a marine basin between Arabia and India/Madagascar; rifting in the Late Triassic and oceanization during Late Jurassic times led to the separation of East Gondwana.
Resumo:
Pre-Variscan basement elements of Central Europe appear in polymetamorphic domains juxtaposed through Variscan and/or Alpine tectonic events. Consequently, nomenclatures and zonations applied to Variscan and Alpine structures, respectively, cannot be valid for pre-Variscan structures. Comparing pre-Variscan relics hidden in the Variscan basement areas of Central Europe, the Alps included, large parallels between the evolution of basement areas of future Avalonia and its former peri-Gondwanan eastern prolongations (e.g. Cadomia, Intra-Alpine Terrane) become evident. Their plate-tectonic evolution from the Late Proterozoic to the Late Ordovician is interpreted as a continuous Gondwana-directed evolution. Cadomian basement, late Cadomian granitoids, late Proterozoic detrital sediments and active margin settings characterize the pre-Cambrian evolution of most of the Gondwana-derived microcontinental pieces. Also the Rheic ocean, separating Avalonia from Gondwana, should have had, at its early stages, a lateral continuation in the former eastern prolongation of peri-Gondwanan microcontinents (e.g. Cadomia, Intra-Alpine Terrane). Subduction of oceanic ridge (Proto-Tethys) triggered the break-off of Avalonia, whereas in the eastern prolongation, the presence of the ridge may have triggered the amalgamation of volcanic arcs and continental ribbons with Gondwana (Ordovician orogenic event). Renewed Gondwana-directed subduction led to the opening of Palaeo-Tethys.
Resumo:
Abstract The purpose of this study is to unravel the geodynamic evolution of Thailand and, from that, to extend the interpretation to the rest of Southeast Asia. The methodology was based in a first time on fieldwork in Northern Thailand and Southernmost Myanmar, using a multidisciplinary approach, and then on the compilation and re-interpretation, in a plate tectonics point of view, of existing data about the whole Southeast Asia. The main results concern the Nan-Uttaradit suture, the Chiang Mai Volcanic Belt and the proposition of a new location for the Palaeotethys suture. This led to the establishment of a new plate tectonic model for the geodynamic evolution of Southeast Asia, implying the existence new terranes (Orang Laut and the redefinition of Shan-Thai) and the role of the Palaeopacific Ocean in the tectonic development of the area. The model proposed here considers the Palaeotethys suture as located along the Tertiary Mae Yuam Fault, which represents the divide between the Cimmerian Sibumasu terrane and the Indochina-derived Shan-Thai block. The term Shan-Thai, previously used to define the Cimmerian area (when the Palaeotethys suture was thought to represented by the Nan-Uttaradit suture), was redefined here by keeping its geographical location within the Shan States of Myanmar and Central-Northern Thailand, but attributing it an East Asian Origin. Its detachment from Indochina was the result of the Early Permian opening of the Nan basin. The Nan basin closed during the Middle Triassic, before the deposition of Carnian-Norian molasse. The modalities of the closure of the basin imply a first phase of Middle Permian obduction, followed by final eastwards subduction. The Chiang Mai Volcanic Belt consists of scattered basaltic rocks erupted at least during the Viséan in an extensional continental intraplate setting, on the Shan-Thai part of the Indochina block. The Viséan age was established by the dating of limestone stratigraphically overlying the basalts. In several localities of the East Asian Continent, coeval extensional features occur, possibly implying one or more Early Carboniferous extensional events at a regional scale. These events occurred either due to the presence of a mantle plume or to the roll-back of the Palaeopacific Ocean, subducting beneath Indochina and South China, or both. The Palaeopacific Ocean is responsible, during the Early Permian, for the opening of the Song Ma and Poko back-arcs (Vietnam) with the consequent detachment of the Orang Laut Terranes (Eastern Vietnam, West Sumatra, Kalimantan, Palawan, Taiwan). The Late Triassic/Early Jurassic closure of the Eastern Palaeotethys is considered as having taken place by subduction beneath its southern margin (Gondwana), due to the absence of Late Palaeozoic arc magmatism on its northern (Indochinese) margin and the presence of volcanism on the Cimmerian blocks (Mergui, Lhasa). Résumé Le but de cette étude est d'éclaircir l'évolution géodynamique de la Thaïlande et, à partir de cela, d'étendre l'interprétation au reste de l'Asie du Sud-Est. La méthodologie utilisée est basée dans un premier temps sur du travail de terrain en Thaïlande du nord et dans l'extrême sud du Myanmar, en se basant sur une approche pluridisciplinaire. Dans un deuxième temps, la compilation et la réinterprétation de données préexistantes sur l'Asie du Sud-est la été faite, dans une optique basée sur la tectonique des plaques. Les principaux résultats de ce travail concernent la suture de Nan-Uttaradit, la « Chiang Mai Volcanic Belt» et la proposition d'une nouvelle localité pour la suture de la Paléotethys. Ceci a conduit à l'établissement d'un nouveau modèle pour l'évolution géodynamique de l'Asie du Sud-est, impliquant l'existence de nouveaux terranes (Orang Laut et Shan-Thai redéfini) et le rôle joué par le Paléopacifique dans le développement tectonique de la région. Le modèle présenté ici considère que la suture de la Paléotethys est située le long de la faille Tertiaire de Mae Yuam, qui représente la séparation entre le terrain Cimmérien de Sibumasu et le bloc de Shan-Thai, d'origine Indochinoise. Le terme Shan-Thai, anciennement utilise pour définir le bloc Cimmérien (quand la suture de la Paléotethys était considérée être représentée par la suture de Nan-Uttaradit), a été redéfini ici en maintenant sa localisation géographique dans les états Shan du Myanmar et la Thaïlande nord-centrale, mais en lui attribuant une origine Est Asiatique. Son détachement de l'Indochine est le résultat de l'ouverture du basin de Nan au Permien Inférieur. Le basin de Nan s'est fermé pendant le Trias Moyen, avant le dépôt de molasse Carnienne-Norienne. Les modalités de fermeture du basin invoquent une première phase d'obduction au Permien Moyen, suivie par une subduction finale vers l'est. La "Chiang Mai Volcanic Belt" consiste en des basaltes éparpillés qui ont mis en place au moins pendant le Viséen dans un contexte extensif intraplaque continental sur la partie de l'Indochine correspondant au bloc de Shan-Thai. L'âge Viséen a été établi sur la base de la datation de calcaires qui surmontent stratigraphiquement les basaltes. Dans plusieurs localités du continent Est Asiatique, des preuves d'extension plus ou moins contemporaines ont été retrouvées, ce qui implique l'existence d'une ou plusieurs phases d'extension au Carbonifère Inférieur a une échelle régionale. Ces événements sont attribués soit à la présence d'un plume mantellique, ou au rollback du Paléopacifique, qui subductait sous l'Indochine et la Chine Sud, soit les deux. Pendant le Permien inférieur, le Paléopacifique est responsable pour l'ouverture des basins d'arrière arc de Song Ma et Poko (Vietnam), induisant le détachement des Orang Laut Terranes (Est Vietnam, Ouest Sumatra, Kalimantan, Palawan, Taiwan). La fermeture de la Paléotethys Orientale au Trias Supérieur/Jurassique Inférieur est considérée avoir eu lieu par subduction sous sa marge méridionale (Gondwana), à cause de l'absence de magmatisme d'arc sur sa marge nord (Indochinoise) et de la présence de volcanisme sur les blocs Cimmériens de Lhassa et Sibumasu (Mergui). Résumé large public L'histoire géologique de l'Asie du Sud-est depuis environ 430 millions d'années a été déterminée par les collisions successives de plusieurs continents les uns avec les autres. Il y a environ 430 millions d'années, au Silurien, un grand continent appelé Gondwana, a commencé à se «déchirer» sous l'effet des contraintes tectoniques qui le tiraient. Cette extension a provoqué la rupture du continent et l'ouverture d'un grand océan, appelé Paléotethys, éloignant les deux parties désormais séparées. C'est ainsi que le continent Est Asiatique, composé d'une partie de la Chine actuelle, de la Thaïlande, du Myanmar, de Sumatra, du Vietnam et de Bornéo a été entraîné avec le bord (marge) nord de la Paléotethys, qui s'ouvrait petit à petit. Durant le Carbonifère Supérieur, il y a environ 300 millions d'années, le sud du Gondwana subissait une glaciation, comme en témoigne le dépôt de sédiments glaciaires dans les couches de cet âge. Au même moment le continent Est Asiatique se trouvait à des latitudes tropicales ou équatoriales, ce qui permettait le dépôt de calcaires contenant différents fossiles de foraminifères d'eau chaude et de coraux. Durant le Permien Inférieur, il y a environ 295 millions d'années, la Paléotethys Orientale, qui était un relativement vieil océan avec une croûte froide et lourde, se refermait. La croûte océanique a commencé à s'enfoncer, au sud, sous le Gondwana. C'est ce que l'on appelle la subduction. Ainsi, le Gondwana s'est retrouvé en position de plaque supérieure, par rapport à la Paléotethys qui, elle, était en plaque inférieure. La plaque inférieure en subductant a commencé à reculer. Comme elle ne pouvait pas se désolidariser de la plaque supérieure, en reculant elle l'a tirée. C'est le phénomène du «roll-back ». Cette traction a eu pour effet de déchirer une nouvelle fois le Gondwana, ce qui a résulté en la création d'un nouvel Océan, la Neotethys. Cet Océan en s'ouvrant a déplacé une longue bande continentale que l'on appelle les blocs Cimmériens. La Paléotethys était donc en train de se fermer, la Neotethys de s'ouvrir, et entre deux les blocs Cimmériens se rapprochaient du Continent Est Asiatique. Pendant ce temps, le continent Est Asiatique était aussi soumis à des tensions tectoniques. L'Océan Paléopacifique, à l'est de celui-ci, était aussi en train de subducter. Cette subduction, par roll-back, a déchiré le continent en détachant une ligne de microcontinents appelés ici « Orang Laut Terranes », séparés du continent par deux océans d'arrière arc : Song Ma et Poko. Ceux-ci sont composés de Taiwan, Palawan, Bornéo ouest, Vietnam oriental, et la partie occidentale de Sumatra. Un autre Océan s'est ouvert pratiquement au même moment dans le continent Est Asiatique : l'Océan de Nan qui, en s'ouvrant, a détaché un microcontinent appelé Shan-Thai. La fermeture de l'Océan de Nan, il y a environ 230 millions d'années a resolidarisé Shan-Thai et le continent Est Asiatique et la trace de cet événement est aujourd'hui enregistrée dans la suture (la cicatrice de l'Océan) de Nan-Uttaradit. La cause de l'ouverture de l'Océan de Nan peut soit être due à la subduction du Paléopacifique, soit aux fait que la subduction de la Paléotethys tirait le continent Est Asiatique par le phénomène du « slab-pull », soit aux deux. La subduction du Paléopacifique avait déjà crée de l'extension dans le continent Est Asiatique durant le Carbonifère Inférieur (il y a environ 340-350 millions d'années) en créant des bassins et du volcanisme, aujourd'hui enregistré en différents endroits du continent, dont la ceinture volcanique de Chiang Mai, étudiée ici. A la fin du Trias, la Paléotethys se refermait complètement, et le bloc Cimmérien de Sibumasu entrait en collision avec le continent Est Asiatique. Comme c'est souvent le cas avec les grands océans, il n'y a pas de suture proprement dite, avec des fragments de croûte océanique, pour témoigner de cet évènement. Celui-ci est visible grâce à la différence entre les sédiments du Carbonifère Supérieur et du Permieñ Inférieur de chaque domaine : dans le domaine Cimmérien ils sont de type glaciaire alors que dans le continent Est Asiatique ils témoignent d'un climat tropical. Les océans de Song Ma et Poko se sont aussi refermés au Trias, mais eux ont laissé des sutures visibles
Resumo:
The South America-Antarctica plate system shows many oceanic accretionary systems and subduction zones that initiated and then stopped. To better apprehend the evolution of the system, geodynamic reconstructions (global) have been created from Jurassic (165 Ma) to present, following the techniques used at the University of Lausanne. However, additional synthetic magnetic anomalies were used to refine the geodynamics between 33 Ma and present. The reconstructions show the break up of Gondwana with oceanisation between South America (SAM) and Antarctica (ANT), together with the break off of `Andean' geodynamical units (GDUs). We propose that oceanisation occurs also east and south of the Scotian GDUs. Andean GDUs collide with other GDUs crossing the Pacific. The west coast of SAM and ANT undergo a subsequent collision with all those GDUs between 103 Ma and 84 Ma, and the Antarctic Peninsula also collides with Tierra del Fuego. The SAM-ANT plate boundary experienced a series of extension and shortening with large strike-slip component, culminating with intra-oceanic subduction leading to the presence of the `V-' and anomalies in the Weddell Sea. From 84 Ma, a transpressive collision takes place in the Scotia region, with active margin to the east. As subduction propagates northwards into an old and dense oceanic crust, slab roll-back initiates, giving rise to the western Scotia Sea and the Powell Basin opening. The Drake Passage opens. As the Scotian GDUs migrate eastwards, there is enough space for them to spread and allow a north-south divergence with a spreading axis acting simultaneously with the western Scotia ridge. Discovery Bank stops the migration of South Orkney and `collides with' the SAM-ANT spreading axis, while the northern Scotian GDUs are blocked against the Falkland Plateau and the North-East Georgia Rise. The western and central Scotia and the Powell Basin spreading axes must cease, and the ridge jumps to create the South Sandwich Islands Sea. The Tierra del Fuego-Patagonia region has always experienced mid-oceanic ridge subduction since 84 Ma. Slab window location is also presented (57-0 Ma), because of its important implication for heat flux and magmatism. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
An exceptional, tectonically remarkably unaffected, nearly 200 m-thick continuous section of hemipelagic and turbiditic sediments, covering most of the Triassic is described from the Batain Complex of north-eastern Oman. According to conodont and radiolarian data the sequence spans the late Scythian to the early Norian, a time period of nearly 30 M. Coupled with a high resolution stratigraphy, the lithostratigraphy, sedimentology, as well as sequence and isotope stratigraphy of the section are documented. For the Triassic of the Batain Plain we propose the new name Sal Formation, which replaces the formerly used Matbat Formation, and subdivide it into three new members. The Sal Formation was deposited on the proximal continental margin of northeastern Arabia and records various depositional environments. The lower member is interpreted as the distal part of a homoclinal ramp which evolves to a distally steepened ramp during time of deposition of the middle member. The upper member displays a toe of slope position which is indicated by an increase of proximal turbidites. These sediments form part of a segment of the Neo-Tethyan embayment between Arabia and India. The stratigraphic analysis indicates highly varying sedimentation rates from a minimum of 2 m/M gamma around the Anisian/Ladinian boundary up to 15 m/M gamma during the Lower and Upper Triassic. Sequence-stratigraphically, the Sal section is subdivided into six third order cycles which are biochronologically well integrated into the global Triassic cycle chart. The mixed siliciclastic-calcareous upper member of the Sal Formation typically shows highstand related carbonate shedding. It is, therefore, an important test case for sequence-stratigraphic controlled carbonate export to mixed basin fills. The well developed sequence stratigraphic cycles are mirrored in the isotope patterns. Additionally, the carbon and oxygen isotope data from the Sal Formation record the same chemostratigraphic marker at the Spathian/Anisian boundary known from other Tethyan sections.
Resumo:
Molecular and stable carbon isotope compositions of source-specific hydrocarbons have been used to reconstruct palaeoenvironmental conditions during deposition of the Middle Hettangian to Upper Sinemurian sediments on the northern epicontinental Tethys margin, Frick Swiss Jura. Increasing algal, cyanobacterial and phytoplanktonic (i.e., dinoflagellate) contributions associated with the C-13-enrichment of cyanobacteria derivatives (i.e., hopanes and monomethylalkanes) suggest enhanced primary productivity upsection. This is related to the C-13-enrichment of dissolved CO2 in the upper layers and the progressive increase of depth and oxygenation of the water column. In the Middle Hettangian shallow-water environments (lagoon), the occurrence of green sulfur bacteria (Chlorobiaceae) derivatives indicates that the lower part of the water column was strictly anoxic and rich in H2S. Since these bacteria require very low light intensity to grow, these euxinic conditions may be extended up to the photic zone, allowing for anaerobic photosynthesis. Light penetration depth is most likely reduced by high productivity and/or turbidity in the photic zone. In these sediments, C-13-depleted hopanoids (-39.5 parts per thousand) are most likely associated with phototrophic purple sulfur bacteria utilizing isotopically light organic carbon at the base of the aerobic zone. These purple sulfur bacteria may have consumed the H2S used by Chlorobiaceae in the deeper layers and thus, sustained the algae and cyanobacteria productivity in the upper layers. The C-13-depleted carbonate (-13.3 parts per thousand) may be partially related to the anaerobic oxidation of the organic matter during bacterial sulfate-reduction. (c) 2006 Elsevier Ltd. All rights reserved.