4 resultados para GFRP wastes
em Université de Lausanne, Switzerland
Resumo:
IMPORTANCE: The discontinuation of randomized clinical trials (RCTs) raises ethical concerns and often wastes scarce research resources. The epidemiology of discontinued RCTs, however, remains unclear. OBJECTIVES: To determine the prevalence, characteristics, and publication history of discontinued RCTs and to investigate factors associated with RCT discontinuation due to poor recruitment and with nonpublication. DESIGN AND SETTING: Retrospective cohort of RCTs based on archived protocols approved by 6 research ethics committees in Switzerland, Germany, and Canada between 2000 and 2003. We recorded trial characteristics and planned recruitment from included protocols. Last follow-up of RCTs was April 27, 2013. MAIN OUTCOMES AND MEASURES: Completion status, reported reasons for discontinuation, and publication status of RCTs as determined by correspondence with the research ethics committees, literature searches, and investigator surveys. RESULTS: After a median follow-up of 11.6 years (range, 8.8-12.6 years), 253 of 1017 included RCTs were discontinued (24.9% [95% CI, 22.3%-27.6%]). Only 96 of 253 discontinuations (37.9% [95% CI, 32.0%-44.3%]) were reported to ethics committees. The most frequent reason for discontinuation was poor recruitment (101/1017; 9.9% [95% CI, 8.2%-12.0%]). In multivariable analysis, industry sponsorship vs investigator sponsorship (8.4% vs 26.5%; odds ratio [OR], 0.25 [95% CI, 0.15-0.43]; P < .001) and a larger planned sample size in increments of 100 (-0.7%; OR, 0.96 [95% CI, 0.92-1.00]; P = .04) were associated with lower rates of discontinuation due to poor recruitment. Discontinued trials were more likely to remain unpublished than completed trials (55.1% vs 33.6%; OR, 3.19 [95% CI, 2.29-4.43]; P < .001). CONCLUSIONS AND RELEVANCE: In this sample of trials based on RCT protocols from 6 research ethics committees, discontinuation was common, with poor recruitment being the most frequently reported reason. Greater efforts are needed to ensure the reporting of trial discontinuation to research ethics committees and the publication of results of discontinued trials.
Resumo:
The distribution of low molecular weight carboxylic acids (LMWCA) was investigated in pore water profiles from two porphyry copper tailings impoundments in Chile (Piuquenes at La Andina and Cauquenes at El Teniente mine). The objectives of this study were (1) to determine the distribution of LMWCA, which are interpreted to be the metabolic byproducts of the autotroph microbial community in this low organic carbon system, and (2) to infer the potential role of these acids in cycling of Fe and other elements in the tailings impoundments. The speciation and mobility of iron, and potential for the release of H+ via hydrolysis of the ferric iron, are key factors in the formation of acid mine drainage in sulfidic mine wastes. In the low-pH oxidation zone of the Piuquenes tailings, Fe(III) is the dominant iron species and shows high mobility. LMWCA, which occur mainly between the oxidation front down to 300 cm below the tailings surface at both locations (e.g., max concentrations of 0.12 mmol/L formate, 0.17 mmol/L acetate, and 0.01 mmol/L pyruvate at Piuquenes and 0.14 mmol/L formate, 0.14 mmol/L acetate, and 0.006 mmol/L pyruvate at Cauquenes), are observed at the same location as high Fe concentrations (up to 71.2 mmol/L Fe(II) and 16.1 mmol/L Fe(III), respectively). In this zone, secondary Fe(111) hydroxides are depleted. Our data suggest that LMWCA may influence the mobility of iron in two ways. First, complexation of Fe(III), through formation of bidentate Fe(III)-LMWCA complexes (e.g., pyruvate, oxalate), may enhance the dissolution of Fe(III) (oxy)hydroxides or may prevent precipitation of Fe(III) (oxy)hydroxides. Soluble Fe(III) chelate complexes which may be mobilized downward and convert to Fe(II) by Fe(III) reducing bacteria. Second, monodentate LMWCA (e.g., acetate and formate) can be used by iron-reducing bacteria as electron donors (e.g., Acidophilum spp.), with ferric iron as the electron acceptor. These processes may, in part, explain the low abundances of secondary Fe(III) hydroxide precipitates below the oxidation front and the high concentrations of Fe(II) observed in the pore waters of some low-sulfide systems. The reduction of Fe(III) and the subsequent increase of iron mobility and potential acidity transfer (Fe(II) oxidation can result in the release of H+ in an oxic environment) should be taken in account in mine waste management strategies.