4 resultados para GENOME SEQUENCE

em Université de Lausanne, Switzerland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability of Mycobacterium tuberculosis to establish a latent infection (LTBI) in humans confounds the treatment of tuberculosis. Consequently, there is a need to discover new therapeutic agents that can kill M. tuberculosis both during active disease and LTBI. The streptomycin-dependent strain of M. tuberculosis, 18b, provides a useful tool for this purpose since upon removal of streptomycin (STR) it enters a non-replicating state that mimics latency both in vitro and in animal models. The 4.41 Mb genome sequence of M. tuberculosis 18b was determined and this revealed the strain to belong to clade 3 of the ancient ancestral lineage of the Beijing family. STR-dependence was attributable to insertion of a single cytosine in the 530 loop of the 16S rRNA and to a single amino acid insertion in the N-terminal domain of initiation factor 3. RNA-seq was used to understand the genetic programme activated upon STR-withdrawal and hence to gain insight into LTBI. This revealed reconfiguration of gene expression and metabolic pathways showing strong similarities between non-replicating 18b and M. tuberculosis residing within macrophages, and with the core stationary phase and microaerophilic responses. The findings of this investigation confirm the validity of 18b as a model for LTBI, and provide insight into both the evolution of tubercle bacilli and the functioning of the ribosome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first extensive catalog of structural human variation was recently released. It showed that large stretches of genomic DNA that vary considerably in copy number were extremely abundant. Thus it is conceivable that they play a major role in functional variation. Consistently, genomic insertions and deletions were shown to contribute to phenotypic differences by modifying not only the expression levels of genes within the aneuploid segments but also of normal copy-number neighboring genes. In this report, we review the possible mechanisms behind this latter effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the development of novel typing methods based on whole genome sequencing, most laboratories still rely on classical molecular methods for outbreak investigation or surveillance. Reference methods for Clostridium difficile include ribotyping and pulsed-field gel electrophoresis, which are band-comparing methods often difficult to establish and which require reference strain collections. Here, we present the double locus sequence typing (DLST) scheme as a tool to analyse C. difficile isolates. Using a collection of clinical C. difficile isolates recovered during a 1-year period, we evaluated the performance of DLST and compared the results to multilocus sequence typing (MLST), a sequence-based method that has been used to study the structure of bacterial populations and highlight major clones. DLST had a higher discriminatory power compared to MLST (Simpson's index of diversity of 0.979 versus 0.965) and successfully identified all isolates of the study (100 % typeability). Previous studies showed that the discriminatory power of ribotyping was comparable to that of MLST; thus, DLST might be more discriminatory than ribotyping. DLST is easy to establish and provides several advantages, including absence of DNA extraction [polymerase chain reaction (PCR) is performed on colonies], no specific instrumentation, low cost and unambiguous definition of types. Moreover, the implementation of a DLST typing scheme on an Internet database, such as that previously done for Staphylococcus aureus and Pseudomonas aeruginosa ( http://www.dlst.org ), will allow users to easily obtain the DLST type by submitting directly sequencing files and will avoid problems associated with multiple databases.