7 resultados para GATED POTASSIUM CHANNELS

em Université de Lausanne, Switzerland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Voltage-gated sodium channels (Nav1.x) are important players in chronic pain. A particular interest has grown in Nav1.7, expressed in nociceptors, since mutations in its gene are associated to two inherited pain syndromes or insensitivity to pain. Rufinamide, a drug used to treat refractory epilepsy such as the Lennox-Gastaut syndrome, has been shown to reduce the number of action potentials in cortical neurons without completely blocking Na channels. Aim: The goal of this study was to investigate the effect of rufinamide on Nav1.7 current. Methods and results: Whole-cell patch clamp experiments were performed using HEK293 cells stably expressing Nav1.7. Rufinamide significantly decreased peak sodium current by 28.3, 21.2 and 12.5% at concentrations of 500, 100 and 50μM respectively (precise EC50 could not be calculated since higher rufinamide concentrations could not be achieved in physiological buffer solution). No significant difference on the V1/2 of voltage-dependence of activation was seen; however a shift in the steady-state inactivation curve was observed (-82.6 mV to -88.8 mV and -81.8 to -87.6 mV for 50 and 100 μM rufinamide respectively, p <0.005). Frequency-dependent inhibition of Nav1.7 was also influenced by the drug. One hundred μM rufinamide reduced the peak sodium current (in % of the peak current taken at the first sweep of a train of 50) from 90.8 to 80.8% (5Hz), 88.7 to 71.8% (10 Hz), 69.1 to 49.2% (25 Hz) and 22.3 to 9.8% (50 Hz) (all p <0.05). Onset of fast inactivation was not influenced by the drug since no difference in the time constant of current decay was observed. Conclusion: In the concentration range of plasma level in human treated for epilepsy, 15 μM, rufinamide only minimally blocks Nav1.7. However, it stabilizes the inactivated state and exerts frequencydependent inhibition of Nav1.7. These pharmacological properties may be of use in reducing ectopic discharges as a causal and symptom related contributor of neuropathic pain syndrome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: Glucocorticoids are used to treat macular edema, although the mechanisms underlying this effect remain largely unknown. The authors have evaluated in the normal and endotoxin-induced uveitis (EIU) rats, the effects of dexamethasone (dex) and triamcinolone acetonide (TA) on potassium channel Kir4.1 and aquaporin-4 (AQP4), the two main retinal Müller glial (RMG) channels controlling retinal fluid movement. METHODS: Clinical as well as relatively low doses of dex and TA were injected in the vitreous of normal rats to evaluate their influence on Kir4.1 and AQP4 expression 24 hours later. The dose-dependent effects of the two glucocorticoids were investigated using rat neuroretinal organotypic cultures. EIU was induced by footpad lipopolysaccharide injection, without or with 100 nM intraocular dex or TA. Glucocorticoid receptor and channel expression levels were measured by quantitative PCR, Western blot, and immunohistochemistry. RESULTS: The authors found that dex and TA exert distinct and specific channel regulations at 24 hours after intravitreous injection. Dex selectively upregulated Kir4.1 (not AQP4) in healthy and inflamed retinas, whereas TA induced AQP4 (not Kir4.1) downregulation in normal retina and upregulation in EIU. The lower concentration (100 nM) efficiently regulated the channels. Moreover, in EIU, an inflammatory condition, the glucocorticoid receptor was downregulated in the retina, which was prevented by intravitreous injections of the low concentration of dex or TA. CONCLUSIONS: The results show that dex and TA are far from being equivalent to modulate RMG channels. Furthermore, the authors suggest that low doses of glucocorticoids may have antiedematous effects on the retina with reduced toxicity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methadone is administered as a chiral mixture of (R,S)-methadone. The opioid effect is mainly mediated by (R)-methadone, whereas (S)-methadone blocks the human ether-à-go-go-related gene (hERG) voltage-gated potassium channel more potently, which can cause drug-induced long QT syndrome, leading to potentially lethal ventricular tachyarrhythmias. To investigate whether substitution of (R,S)-methadone by (R)-methadone could reduce the corrected QT (QTc) interval, (R,S)-methadone was replaced by (R)-methadone (half-dose) in 39 opioid-dependent patients receiving maintenance treatment for 14 days. (R)-methadone was then replaced by the initial dose of (R,S)-methadone for 14 days (n = 29). Trough (R)-methadone and (S)-methadone plasma levels and electrocardiogram measurements were taken. The Fridericia-corrected QT (QTcF) interval decreased when (R,S)-methadone was replaced by a half-dose of (R)-methadone; the median (interquartile range [IQR]) values were 423 (398-440) milliseconds (ms) and 412 (395-431) ms (P = .06) at days 0 and 14, respectively. Using a univariate mixed-effect linear model, the QTcF value decreased by a mean of -3.9 ms (95% confidence interval [CI], -7.7 to -0.2) per week (P = .04). The QTcF value increased when (R)-methadone was replaced by the initial dose of (R,S)-methadone for 14 days; median (IQR) values were 424 (398-436) ms and 424 (412-443) ms (P = .01) at days 14 and 28, respectively. The univariate model showed that the QTcF value increased by a mean of 4.7 ms (95% CI, 1.3-8.1) per week (P = .006). Substitution of (R,S)-methadone by (R)-methadone reduces the QTc interval value. A safer cardiac profile of (R)-methadone is in agreement with previous in vitro and pharmacogenetic studies. If the present results are confirmed by larger studies, (R)-methadone should be prescribed instead of (R,S)-methadone to reduce the risk of cardiac toxic effects and sudden death.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.