14 resultados para Fumonisina B1
em Université de Lausanne, Switzerland
Resumo:
The effects of subchronical applications of the mycotoxin Fumonisin B1 (FB1) were analyzed in vitro, using aggregating cell cultures of fetal rat telencephalon as a model. As cells in the aggregates developed from an immature state to a highly differentiated state, with synapse and compact myelin formation, it was possible to study the effects of FB1 at different developmental stages. The results showed that FB1 did not cause cell loss and it had no effects on neurons. However it decreased strongly the total content of myelin basic protein, the main constituent of the myelin sheath, during the myelination period (DIV 18-28). The loss of myelin was not accompanied by a loss of oligodendrocytes, the myelinating cells. However FB1 had effects on the maturation of oligodendrocytes, as revealed by a decrease in the expression of galactocerebroside, and on the compaction of myelin, as shown by a reduction of the expression of the mnyelin/oligodendrocyte glycoprotein MOG. The content of the cytoskeletal component glial fibrillary acidic protein (GFAP) was decreased in differentiated astrocytes, exclusively, while neurons were not affected by 40 microM of FB1 applied continuously for 10 days. In summary, FB1 selectively affected glial cells. In particular, FB1 delayed oligodendrocyte development and impaired myelin formation and deposition.
Resumo:
At 3 T, the effective wavelength of the RF field is comparable to the dimension of the human body, resulting in B1 standing wave effects and extra variations in phase. This effect is accompanied by an increase in B0 field inhomogeneity compared to 1.5 T. This combination results in nonuniform magnetization preparation by the composite MLEV weighted T2 preparation (T2 Prep) sequence used for coronary magnetic resonance angiography (MRA). A new adiabatic refocusing T2 Prep sequence is presented in which the magnetization is tipped into the transverse plane with a hard RF pulse and refocused using a pair of adiabatic fast-passage RF pulses. The isochromats are subsequently returned to the longitudinal axis using a hard RF pulse. Numerical simulations predict an excellent suppression of artifacts originating from B1 inhomogeneity while achieving good contrast enhancement between coronary arteries and surrounding tissue. This was confirmed by an in vivo study, in which coronary MR angiograms were obtained without a T2 Prep, with an MLEV weighted T2 Prep and the proposed adiabatic T2 Prep. Improved quantitative and qualitative coronary MRA image measurement was achieved using the adiabatic T2 Prep at 3 T.
Resumo:
We describe the transcriptional potentiation in estrogen responsive transcription extracts of the Xenopus vitellogenin B1 gene promoter through the formation of a positioned nucleosome. Nuclease digestion and hydroxyl radical cleavage indicate that strong, DNA sequence-directed positioning of a nucleosome occurs between -300 and -140 relative to the start site of transcription. Deletion of this DNA sequence abolishes the potentiation of transcription due to nucleosome assembly. The wrapping of DNA around the histone core of the nucleosome positioned between -300 and -140 creates a static loop in which distal estrogen receptor binding sites are brought close to proximal promoter elements. This might facilitate interactions between the trans-acting factors themselves and/or RNA polymerase. Such a nucleosome provides an example of how chromatin structure might have a positive effect on the transcription process.
Resumo:
Eukaryotic gene expression depends on a complex interplay between the transcriptional apparatus and chromatin structure. We report here a yeast model system for investigating the functional interaction between the human estrogen receptor (hER) and CTF1, a member of the CTF/NFI transcription factor family. We show that a CTF1-fusion protein and the hER transactivate a synthetic promoter in yeast in a synergistic manner. This interaction requires the proline-rich transactivation domain of CTF1. When the natural estrogen-dependent vitellogenin B1 promoter is tested in yeast, CTF1 and CTF1-fusion proteins are unable to activate transcription, and no synergy is observed between hER, which activates the B1 promoter, and these factors. Chromatin structure analysis on this promoter reveals positioned nucleosomes at -430 to -270 (+/-20 bp) and at -270 to - 100 (+/-20 bp) relative to the start site of transcription. The positions of the nucleosomes remain unchanged upon hormone-dependent transcriptional activation of the promoter, and the more proximal nucleosome appears to mask the CTF/NFI site located at - 101 to -114. We conclude that a functional interaction of hER with the estrogen response element located upstream of a basal promoter occurs in yeast despite the nucleosomal organization of this promoter, whereas the interaction of CTF1 with its target site is apparently precluded by a nucleosome.
Resumo:
Transcriptional activity relies on coregulators that modify the chromatin structure and serve as bridging factors between transcription factors and the basal transcription machinery. Using the DE domain of human peroxisome proliferator-activated receptor gamma (PPARgamma) as bait in a yeast two-hybrid screen of a human adipose tissue library, we isolated the scaffold attachment factor B1 (SAFB1/HET/HAP), which was previously shown to be a corepressor of estrogen receptor alpha. We show here that SAFB1 has a very broad tissue expression profile in human and is also expressed all along mouse embryogenesis. SAFB1 interacts in pull-down assays not only with PPARgamma but also with all nuclear receptors tested so far, albeit with different affinities. The association of SAFB1 and PPARgamma in vivo is further demonstrated by fluorescence resonance energy transfer (FRET) experiments in living cells. We finally show that SAFB1 is a rather general corepressor for nuclear receptors. Its change in expression during the early phases of adipocyte and enterocyte differentiation suggests that SAFB1 potentially influences cell proliferation and differentiation decisions.
Resumo:
At high magnetic field strengths (≥ 3T), the radiofrequency wavelength used in MRI is of the same order of magnitude of (or smaller than) the typical sample size, making transmit magnetic field (B1+) inhomogeneities more prominent. Methods such as radiofrequency-shimming and transmit SENSE have been proposed to mitigate these undesirable effects. A prerequisite for such approaches is an accurate and rapid characterization of the B1+ field in the organ of interest. In this work, a new phase-sensitive three-dimensional B1+-mapping technique is introduced that allows the acquisition of a 64 × 64 × 8 B1+-map in ≈ 20 s, yielding an accurate mapping of the relative B1+ with a 10-fold dynamic range (0.2-2 times the nominal B1+). Moreover, the predominant use of low flip angle excitations in the presented sequence minimizes specific absorption rate, which is an important asset for in vivo B1+-shimming procedures at high magnetic fields. The proposed methodology was validated in phantom experiments and demonstrated good results in phantom and human B1+-shimming using an 8-channel transmit-receive array.
Resumo:
The liver-specific vitellogenin B1 promoter is efficiently activated by estrogen within a nucleosomal environment after microinjection into Xenopus laevis oocytes, consistent with the hypothesis that significant nucleosome remodeling over this promoter is not a prerequisite for the activation by the estrogen receptor (ERalpha). This observation lead us to investigate determinants other than ERalpha of chromatin structure and transcriptional activation of the vitellogenin B1 promoter in this system and in vitro. We find that the liver-enriched transcription factor HNF3 has an important organizational role for chromatin structure as demonstrated by DNase I-hypersensitive site mapping. Both HNF3 and the estrogen receptor activate transcription synergistically and are able to interact with chromatin reconstituted in vitro with three positioned nucleosomes. We propose that HNF3 is the cellular determinant which establishes a promoter environment favorable to a rapid transcriptional activation by the estrogen receptor.
Resumo:
The Xenopus laevis vitellogenin B1 promoter was assembled into nucleosomes in an oocyte extract. Subsequent RNA polymerase II-dependent transcription from these DNA templates fully reconstituted in chromatin in a HeLa nuclear extract was increased 50-fold compared with naked DNA. Remarkably, under specific conditions, production of a high level of transcripts occurred at very low DNA (1 ng/microliter) and HeLa nuclear protein (1.6 micrograms/microliters) concentrations. When partially reconstituted templates were used, transcription efficiency was intermediate between that of fully reconstituted and naked DNA. These results implicate chromatin in the process of the transcriptional activation observed. Depletion from the oocyte assembly extract of an NF-I-like factor which binds in the promoter region upstream of the TATA box (-114 to -101) or deletion from the promoter of the region interacting with this factor reduced the transcriptional efficiency of the assembled templates by a factor of 5, but transcription of these templates was still 10 times higher than that of naked DNA. Together, these results indicate that the NF-I-like factor participates in the very efficient transcriptional potentiation of the vitellogenin B1 promoter which occurs during nucleosome assembly.
Resumo:
A T(2) magnetization-preparation (T(2) Prep) sequence is proposed that is insensitive to B(1) field variations and simultaneously provides fat suppression without any further increase in specific absorption rate (SAR). Increased B(1) inhomogeneity at higher magnetic field strength (B(0) > or = 3T) necessitates a preparation sequence that is less sensitive to B(1) variations. For the proposed technique, T(2) weighting in the image is achieved using a segmented B(1)-insensitive rotation (BIR-4) adiabatic pulse by inserting two equally long delays, one after the initial reverse adiabatic half passage (AHP), and the other before the final AHP segment of a BIR-4 pulse. This sequence yields T(2) weighting with both B(1) and B(0) insensitivity. To simultaneously suppress fat signal (at the cost of B(0) insensitivity), the second delay is prolonged so that fat accumulates additional phase due to its chemical shift. Numerical simulations as well as phantom and in vivo image acquisitions were performed to show the efficacy of the proposed technique.
Resumo:
A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.
Resumo:
Genomic clones containing the Xenopus laevis vitellogenin gene B1 have been isolated from DNA libraries and characterized by heteroduplex mapping in the electron microscope, restriction endonuclease analysis, and in vitro transcription in a HeLa whole-cell extract. Sequences from the 3'-flanking region of the previously isolated A1 vitellogenin gene were found in the 5'-flanking region of this B1 gene. Thus, the two genes are linked, with 15.5 kilobase pairs of DNA between them. Their length is about 22 kilobase pairs (A1 gene) and 16.5 kilobase pairs (B1 gene) and they have the following arrangement: 5'-A1 gene-spacer-B1 gene-3'. The analysis of heteroduplexes formed between the two genes revealed several regions of homology. Both genes are in the same orientation and, therefore, are transcribed from the same DNA strand. The possible events by which the vitellogenin gene family arose in Xenopus laevis are discussed.
Regulation of the vitellogenin gene B1 promoter after transfer into hepatocytes in primary cultures.
Resumo:
The estrogen-dependent and tissue-specific regulation of the Xenopus laevis vitellogenin gene B1 promoter has been studied by lipid-mediated DNA transfer into Xenopus hepatocytes in primary culture. Hepatocytes achieve an efficient hormonal control of this promoter through a functional interaction between the estrogen responsive elements and a promoter proximal region upstream of the TATA box, which is characterized by a high density of binding sites for the transcription factors CTF/NF-1, C/EBP and HNF3. DNA accessibility to restriction enzymes within the chromosomal copy of the vitellogenin gene B1 promoter shows that the estrogen responsive unit and the promoter proximal region are sensitive to digestion in uninduced and estrogen-induced hepatocytes but not in erythrocyte nuclei. Together, these findings support the notion that chromatin configuration as well as the interplay of promoter elements mediate proper hormone-dependent and tissue-specific expression of the B1 vitellogenin gene.
Resumo:
Vitellogenin genes are expressed under strict estrogen control in the liver of female oviparous vertebrates. Gene transfer experiments using estrogen-responsive cells have shown that the 13 bp perfect palindromic element GGTCACTGTGACC found upstream of the Xenopus laevis vitellogenin gene A2 promoter mediates hormonal stimulation and thus, was called the estrogen-responsive element (ERE). In the Xenopus vitellogenin genes B1 and B2 there are two closely adjacent EREs with one or more base substitutions when compared to the consensus ERE GGTCANNNTGACC. On their own, these degenerated elements have only a low or no regulatory capacity at all but act together synergistically to form an estrogen-responsive unit (ERU) with the same strength as the perfect palindromic 13 bp element. Analysis of estrogen receptor binding to the gene B1 ERU revealed a cooperative interaction of receptor dimers to the two adjacent imperfect EREs which most likely explains the synergistic stimulation observed in vivo. Furthermore, a promoter activator element located between positions --113 and --42 of the gene B1 and functional in the human MCF-7 and the Xenopus B3.2 cells has been identified and shown to be involved in the high level of induced transcription activity when the ERE is placed at a distance from the promoter. Finally, a hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to characterize two additional novel cis-acting elements within the vitellogenin gene B1 promoter. One of them, a negative regulatory element (NRE), is responsible for repression of promoter activity in the absence of hormone. The second is related to the NF-I binding site and is required, together with the ERE, to mediate hormonal induction. Moreover, we detected three trans-acting activities in Xenopus liver nuclear extracts that interact with these regions and demonstrated that they participate in the regulation of the expression of the vitellogenin promoter in vitro.