183 resultados para Frontal Cortex
em Université de Lausanne, Switzerland
Resumo:
In order to understand relationships between executive and structural deficits in the frontal cortex of patients within normal aging or Alzheimer's disease, we studied frontal pathological changes in young and old controls compared to cases with sporadic (AD) or familial Alzheimer's disease (FAD). We performed a semi-automatic computer assisted analysis of the distribution of beta-amyloid (Abeta) deposits revealed by Abeta immunostaining as well as of neurofibrillary tangles (NFT) revealed by Gallyas silver staining in Brodman areas 10 (frontal polar), 12 (ventro-infero-median) and 24 (anterior cingular), using tissue samples from 5 FAD, 6 sporadic AD and 10 control brains. We also performed densitometric measurements of glial fibrillary acidic protein, principal compound of intermediate filaments of astrocytes, and of phosphorylated neurofilament H and M epitopes in areas 10 and 24. All regions studied seem almost completely spared in normal old controls, with only the oldest ones exhibiting a weak percentage of beta-amyloid deposit and hardly any NFT. On the contrary, all AD and FAD cases were severely damaged as shown by statistically significant increased percentages of beta-amyloid deposit, as well as by a high number of NFT. FAD cases (all from the same family) had statistically more beta-amyloid and GFAP than sporadic AD cases in both areas 10 and 24 and statistically more NFT only in area 24. The correlation between the percentage of beta-amyloid and the number of NFT was significant only for area 24. Altogether, these data suggest that the frontal cortex can be spared by AD type lesions in normal aging, but is severely damaged in sporadic and still more in familial Alzheimer's disease. The frontal regions appear to be differentially vulnerable, with area 12 having the less amyloid burden, area 24 the less NFT and area 10 having both more amyloid and more NFT. This pattern of damage in frontal regions may represent a strong neuroanatomical support for the deterioration of attention and cognitive capacities as well as for the presence of emotional and behavioral troubles in AD patients.
Resumo:
RATIONALE: Dopamine D2 receptors are the main target of antipsychotic drugs. In the brain, D2 receptors coexpress with adenosine A2A and CB1 cannabinoid receptors, leading to functional interactions. OBJECTIVES: The protein and messenger RNA (mRNA) contents of A2A, D2, and CB1 receptors were quantified in postmortem prefrontal cortex of subjects with schizophrenia. MATERIALS AND METHODS: The study was performed in subjects suffering schizophrenia (n=31) who mainly died by suicide, matched with non-schizophrenia suicide victims (n=13) and non-suicide controls (n=33). The density of receptor proteins was evaluated by immunodetection techniques, and their relative mRNA expression was quantified by quantitative real-time polymerase chain reaction. RESULTS: In schizophrenia, the densities of A2A (90+/-6%, n=24) and D2-like receptors (95+/-5%, n=22) did not differ from those in controls (100%). Antipsychotic treatment did not induce changes in the protein expression. In contrast, the immunodensity of CB1 receptors was significantly decreased (71+/-7%, n=11; p<0.05) in antipsychotic-treated subjects with schizophrenia but not in drug-free subjects (104+/-13%, n=11). The relative mRNA amounts encoding for A2A, D2, and CB1 receptors were similar in brains of drug-free, antipsychotic-treated subjects with schizophrenia and controls. CONCLUSIONS: The findings suggest that antipsychotics induce down-regulation of CB1 receptors in brain. Since A2A, D2, and CB1 receptors coexpress on brain GABAergic neurons and reductions in markers of GABA neurotransmission have been identified in schizophrenia, a lower density of CB1 receptor induced by antipsychotics could represent an adaptative mechanism that reduces the endocannabinoid-mediated suppression of GABA release, contributing to the normalization of cognitive functions in the disorder.
Resumo:
We investigated how synaptic plasticity is related to the neurodegeneration process in the human dorsolateral prefrontal cortex. Pre- and postsynaptic proteins of Brodmann's area 9 from patients with Alzheimer's disease (AD) and age-matched controls were quantified by immunohistochemical methods and Western blots. The main finding was a significant increase in the expression of postsynaptic density protein PSD-95 in AD brains, revealed on both sections and immunoblots, while the expression of spinophilin, associated to spines, remained quantitatively unchanged despite qualitative changes with age and disease. Presynaptic protein alpha-synuclein indicated an increased immunohistochemical level, while synaptophysin remained unchanged. MAP2, a somatodendritic microtubule protein, as well as AD markers such as amyloid-beta protein and phosphorylated protein tau showed an increased expression on immunosections in AD. Altogether these changes suggest neuritic and synaptic reorganization in the process of AD. In particular, the significant increase in PSD-95 expression suggests a change in NMDA receptors trafficking and may represent a novel marker of functional significance for the disease.
Resumo:
In this study, we quantitatively investigated the expression of beta-site amyloid precursor protein cleaving enzyme (BACE) in the entorhinohippocampal and frontal cortex of Alzheimer's disease (AD) and old control subjects. The semiquantitative estimation indicated that the intensity of BACE overall immunoreactivity did not differ significantly between AD and controls, but that a significantly stronger staining was observed in the hippocampal regions CA3-4 compared to other regions in both AD patients and controls. The quantitative estimation confirmed that the number of BACE-positive neuronal profiles was not significantly decreased in AD. However, some degeneration of BACE-positive profiles was attested by the colocalization of neurons expressing BACE and exhibiting neurofibrillary tangles (NFT), as well as by a decrease in the surface area of BACE-positive profiles. In addition, BACE immunocytochemical expression was observed in and around senile plaques (SP), as well as in reactive astrocytes. BACE-immunoreactive astrocytes were localized in the vicinity or close to the plaques and their number was significantly increased in AD entorhinal cortex. The higher amount of beta-amyloid SP and NFT in AD was not correlated with an increase in BACE immunoreactivity. Taken together, these data accent that AD progression does not require an increased neuronal BACE protein level, but suggest an active role of BACE in immunoreactive astrocytes. Moreover, the strong expression in controls and regions less vulnerable to AD puts forward the probable existence of alternate BACE functions.
Resumo:
Background: Language processing abnormalities and inhibition difficulties are hallmark features of schizophrenia. The objective of this study is to asses the blood oxygenation level-dependent (BOLD) response at two different stages of the illness and compare the frontal activity between adolescents and adults with schizophrenia. Methods: 10 adults with schizophrenia (mean age 31,5 years) and 6 psychotic adolescents with schizophrenic symptoms (mean age 16,2 years) underwent functional magnetic resonance imaging while performing two frontal tasks. Regional activation is compared in the bilateral frontal areas during a covert verbal fluency task (letter version) and a Stroop task (inhibition task). Results: Preliminary results show poorer task performance and less frontal cortex activation during both tasks in the adult group of patients with schizophrenia. In the adolescent patients group, fMRI analysis show significant and larger activity in the left frontal operculum (Broca's area) in the verbal fluency task and greater activity in the medium cingulate during the inhibition phase of the Stroop task. Conclusions: These preliminary findings suggest a decrease of frontal activity in the course of the illness. We assume that schizophrenia contributes to frontal brain activity reduction.
Resumo:
In Alzheimer's disease (AD), synaptic alterations play a major role and are often correlated with cognitive changes. In order to better understand synaptic modifications, we compared alterations in NMDA receptors and postsynaptic protein PSD-95 expression in the entorhinal cortex (EC) and frontal cortex (FC; area 9) of AD and control brains. We combined immunohistochemical and image analysis methods to quantify on consecutive sections the distribution of PSD-95 and NMDA receptors GluN1, GluN2A and GluN2B in EC and FC from 25 AD and control cases. The density of stained receptors was analyzed using multivariate statistical methods to assess the effect of neurodegeneration. In both regions, the number of neuronal profiles immunostained for GluN1 receptors subunit and PSD-95 protein was significantly increased in AD compared to controls (3-6 fold), while the number of neuronal profiles stained for GluN2A and GluN2B receptors subunits was on the contrary decreased (3-4 fold). The increase in marked neuronal profiles was more prominent in a cortical band corresponding to layers 3 to 5 with large pyramidal cells. Neurons positive for GluN1 or PSD-95 staining were often found in the same localization on consecutive sections and they were also reactive for the anti-tau antibody AD2, indicating a neurodegenerative process. Differences in the density of immunoreactive puncta representing neuropile were not statistically significant. Altogether these data indicate that GluN1 and PSD-95 accumulate in the neuronal perikarya, but this is not the case for GluN2A and GluN2B, while the neuropile compartment is less subject to modifications. Thus, important variations in the pattern of distribution of the NMDA receptors subunits and PSD-95 represent a marker in AD and by impairing the neuronal network, contribute to functional deterioration.
Resumo:
Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into adulthood suggest ongoing structural alterations affecting frontostriatal circuits. Using cortical thickness estimation and voxel-based analysis of T1- and diffusion-weighted structural magnetic resonance images, we examined 40 adults with Tourette syndrome in comparison with 40 age- and gender-matched healthy controls. Patients with Tourette syndrome showed relative grey matter volume reduction in orbitofrontal, anterior cingulate and ventrolateral prefrontal cortices bilaterally. Cortical thinning extended into the limbic mesial temporal lobe. The grey matter changes were modulated additionally by the presence of co-morbidities and symptom severity. Prefrontal cortical thickness reduction correlated negatively with tic severity, while volume increase in primary somatosensory cortex depended on the intensity of premonitory sensations. Orbitofrontal cortex volume changes were further associated with abnormal water diffusivity within grey matter. White matter analysis revealed changes in fibre coherence in patients with Tourette syndrome within anterior parts of the corpus callosum. The severity of motor tics and premonitory urges had an impact on the integrity of tracts corresponding to cortico-cortical and cortico-subcortical connections. Our results provide empirical support for a patho-aetiological model of Tourette syndrome based on developmental abnormalities, with perturbation of compensatory systems marking persistence of symptoms into adulthood. We interpret the symptom severity related grey matter volume increase in distinct functional brain areas as evidence of ongoing structural plasticity. The convergence of evidence from volume and water diffusivity imaging strengthens the validity of our findings and attests to the value of a novel multimodal combination of volume and cortical thickness estimations that provides unique and complementary information by exploiting their differential sensitivity to structural change.
Resumo:
This study was conducted to identify enzyme systems eventually catalysing a local cerebral metabolism of citalopram, a widely used antidepressant of the selective serotonin reuptake inhibitor type. The metabolism of citalopram, of its enantiomers and demethylated metabolites was investigated in rat brain microsomes and in rat and human brain mitochondria. No cytochrome P-450 mediated transformation was observed in rat brain. By analysing H2O2 formation, monoamine oxidase A activity in rat brain mitochondria could be measured. In rat whole brain and in human frontal cortex, putamen, cerebellum and white matter of five brains monoamine oxidase activity was determined by the stereoselective measurement of the production of citalopram propionate. All substrates were metabolised by both forms of MAO, except in rat brain, where monoamine oxidase B activity could not be detected. Apparent Km and Vmax of S-citalopram biotransformation in human frontal cortex by monoamine oxidase B were found to be 266 microM and 6.0 pmol min(-1) mg(-1) protein and by monoamine oxidase A 856 microM and 6.4 pmol min(-1) mg(-1) protein, respectively. These Km values are in the same range as those for serotonin and dopamine metabolism by monoamine oxidases. Thus, the biotransformation of citalopram in the rat and human brain occurs mainly through monoamine oxidases and not, as in the liver, through cytochrome P-450.
Resumo:
Deduction allows us to draw consequences from previous knowledge. Deductive reasoning can be applied to several types of problem, for example, conditional, syllogistic, and relational. It has been assumed that the same cognitive operations underlie solutions to them all; however, this hypothesis remains to be tested empirically. We used event-related fMRI, in the same group of subjects, to compare reasoning-related activity associated with conditional and syllogistic deductive problems. Furthermore, we assessed reasoning-related activity for the two main stages of deduction, namely encoding of premises and their integration. Encoding syllogistic premises for reasoning was associated with activation of BA 44/45 more than encoding them for literal recall. During integration, left fronto-lateral cortex (BA 44/45, 6) and basal ganglia activated with both conditional and syllogistic reasoning. Besides that, integration of syllogistic problems additionally was associated with activation of left parietal (BA 7) and left ventro-lateral frontal cortex (BA 47). This difference suggests a dissociation between conditional and syllogistic reasoning at the integration stage. Our finding indicates that the integration of conditional and syllogistic reasoning is carried out by means of different, but partly overlapping, sets of anatomical regions and by inference, cognitive processes. The involvement of BA 44/45 during both encoding (syllogisms) and premise integration (syllogisms and conditionals) suggests a central role in deductive reasoning for syntactic manipulations and formal/linguistic representations.
Resumo:
Dorsal and ventral pathways for syntacto-semantic speech processing in the left hemisphere are represented in the dual-stream model of auditory processing. Here we report new findings for the right dorsal and ventral temporo-frontal pathway during processing of affectively intonated speech (i.e. affective prosody) in humans, together with several left hemispheric structural connections, partly resembling those for syntacto-semantic speech processing. We investigated white matter fiber connectivity between regions responding to affective prosody in several subregions of the bilateral superior temporal cortex (secondary and higher-level auditory cortex) and of the inferior frontal cortex (anterior and posterior inferior frontal gyrus). The fiber connectivity was investigated by using probabilistic diffusion tensor based tractography. The results underscore several so far underestimated auditory pathway connections, especially for the processing of affective prosody, such as a right ventral auditory pathway. The results also suggest the existence of a dual-stream processing in the right hemisphere, and a general predominance of the dorsal pathways in both hemispheres underlying the neural processing of affective prosody in an extended temporo-frontal network.
Resumo:
Cysteine thiol modifications are increasingly recognized to occur under both physiological and pathophysiological conditions, making their accurate detection, identification and quantification of growing importance. However, saturation labeling of thiols with fluorescent dyes results in poor protein recuperation and therefore requires the use of large quantities of starting material. This is especially important in sequential dye-labeling steps when applied for an identification of cysteine modifications. First, we studied the effects of different detergents during labeling procedure, i.e. Tween 20, Triton X-100 and CHAPS, on protein yield and composition. Tween 20 and Triton X-100 resulted in yields of around 50% labeled proteins compared to only 10% with PBS alone and a most diversified 2-DE protein pattern. Secondly, Tween 20 was used for serial protein labeling with maleimid fluorophores, first to conjugate to accessible thiols and after a reduction to label with another fluorophore previously masked di-sulphide and/or oxidized proteins in frontal cortex autopsy tissue of a subject with mild Alzheimer's disease. Two-DE DIGE revealed a complex protein pattern of readily labeled thiols and di-sulphide and/or oxidized proteins. Seventeen proteins were identified by MALDI-TOF and by peptide fingerprints. Several proteins were oxidized and involved in Alzheimer's disease. However methionine oxidation was prevalent. Infrared DIGE may provide an additional tool for an identification of oxidation susceptible proteins.
Resumo:
Astute control of brain activity states is critical for adaptive behaviours and survival. In mammals and birds, electroencephalographic recordings reveal alternating states of wakefulness, slow wave sleep and paradoxical sleep (or rapid eye movement sleep). This control is profoundly impaired in narcolepsy with cataplexy, a disease resulting from the loss of orexin/hypocretin neurotransmitter signalling in the brain. Narcolepsy with cataplexy is characterized by irresistible bouts of sleep during the day, sleep fragmentation during the night and episodes of cataplexy, a sudden loss of muscle tone while awake and experiencing emotions. The neural mechanisms underlying cataplexy are unknown, but commonly thought to involve those of rapid eye movement-sleep atonia, and cataplexy typically is considered as a rapid eye movement sleep disorder. Here we reassess cataplexy in hypocretin (Hcrt, also known as orexin) gene knockout mice. Using a novel video/electroencephalogram double-blind scoring method, we show that cataplexy is not a state per se, as believed previously, but a dynamic, multi-phased process involving a reproducible progression of states. A knockout-specific state and a stereotypical paroxysmal event were introduced to account for signals and electroencephalogram spectral characteristics not seen in wild-type littermates. Cataplexy almost invariably started with a brief phase of wake-like electroencephalogram, followed by a phase featuring high-amplitude irregular theta oscillations, defining an activity profile distinct from paradoxical sleep, referred to as cataplexy-associated state and in the course of which 1.5-2 s high-amplitude, highly regular, hypersynchronous paroxysmal theta bursts (∼7 Hz) occurred. In contrast to cataplexy onset, exit from cataplexy did not show a predictable sequence of activities. Altogether, these data contradict the hypothesis that cataplexy is a state similar to paradoxical sleep, even if long cataplexies may evolve into paradoxical sleep. Although not exclusive to overt cataplexy, cataplexy-associated state and hypersynchronous paroxysmal theta activities are highly enriched during cataplexy in hypocretin/orexin knockout mice. Their occurrence in an independent narcolepsy mouse model, the orexin/ataxin 3 transgenic mouse, undergoing loss of orexin neurons, was confirmed. Importantly, we document for the first time similar paroxysmal theta hypersynchronies (∼4 Hz) during cataplexy in narcoleptic children. Lastly, we show by deep recordings in mice that the cataplexy-associated state and hypersynchronous paroxysmal theta activities are independent of hippocampal theta and involve the frontal cortex. Cataplexy hypersynchronous paroxysmal theta bursts may represent medial prefrontal activity, associated in humans and rodents with reward-driven motor impulse, planning and conflict monitoring.
Resumo:
The postsynaptic density protein PSD-95 is a major element of synapses. PSD-95 is involved in aging, Alzheimer's disease (AD) and numerous psychiatric disorders. However, contradictory data about PSD-95 expression in aging and AD have been reported. Indeed in AD versus control brains PSD-95 varies according to regions, increasing in the frontal cortex, at least in a primary stage, and decreasing in the temporal cortex. In contrast, in transgenic mouse models of aging and AD PSD-95 expression is decreased, in behaviorally aged impaired versus unimpaired rodents it can decrease or increase and finally, it is increased in rodents grown in enriched environments. Different factors explain these contradictory results in both animals and humans, among others concomitant psychiatric endophenotypes, such as depression. The possible involvement of PSD-95 in reactive and/or compensatory mechanisms during AD progression is underscored, at least before the occurrence of important synaptic elimination. Thus, in AD but not in AD transgenic mice, enhanced expression might precede the diminution commonly observed in advanced aging. A two-compartments cell model, separating events taking place in cell bodies and synapses, is presented. Overall these data suggest that AD research will progress by untangling pathological from protective events, a prerequisite for effective therapeutic strategies.
Resumo:
The last decade has presented studies providing evidence for astrocytic exocytosis of glutamate potentiating nerve signals. To make further investigations into this astrocytic attribute we investigated the localization of the vesicular glutamate transporter 1 (VGLUT1) in small processes of astrocytes close to glutamatergic terminals in frontal cortex, striatum, molecular layer of hippocampus and stratum radiatum of hippocampus. According to the importance of VGLUT1 in glutamate exocytosis the presence of VGLUT1 in astrocytic processes indicates the ability to exocytose glutamate. METHODS: For qualitative analysis we used immunoflourescence histochemistry. Sections from rat frontal cortex, striatum, molecular layer of hippocampus and stratum radiatum of hippocampus were labeled with antibodies against glutamine synthetase (an astrocytic marker) and VGLUT1. Z-stacks of 4.5-5 lm obtained by confocal microscopy from each section were deconvolved and 3D reconstructed in Amira. Small astrocytic processes were analysed for the presence of VGLUT1 inside the processes. The quantitative analysis was done by immunogold labeling. Ultrathin sections from each brain region were labeled for GLT (an astrocytic marker) and VGLUT1. Pictures obtained by electron microscopy were analysed and the point density (gold particles/nm2) for VGLUT1 in astrocytic processes was measured. RESULTS: Using confocal 3D reconstructions we were qualitatively able to identify VGLUT1 within small processes of astrocytes in all four brain regions. Reflecting our qualitative findings the electron microscopical immunogold quantifications showed a significant density of gold particles signaling VGLUT1 in astrocytic processes in all four brain regions. CONCLUSION: We extend the results of previous studies on glutamate release from astrocytes, which have focused on the hippocampus, proposing that astrocytic exocytosis of glutamate is a global phenomenon in the brain.