3 resultados para Foraging ecology

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersal process, by which individuals or other dispersing agents such as gametes or seeds move from birthplace to a new settlement locality, has important consequences for the dynamics of genes, individuals, and species. Many of the questions addressed by ecology and evolutionary biology require a good understanding of species' dispersal patterns. Much effort has thus been devoted to overcoming the difficulties associated with dispersal measurement. In this context, genetic tools have long been the focus of intensive research, providing a great variety of potential solutions to measuring dispersal. This methodological diversity is reviewed here to help (molecular) ecologists find their way toward dispersal inference and interpretation and to stimulate further developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed the effect of abandonment of sylvo-pastoral practices in chestnut orchards (Castanea sativa) on bats in southern Switzerland to determine practical recommendations for bat conservation. We compared bat species richness and foraging activities between traditionally managed and unmanaged chestnut orchards, testing the hypothesis that managed orchards provide better foraging opportunities and harbour more bat species. Echolocation calls of foraging bats were sampled simultaneously at paired sites of managed and unmanaged orchards using custom made recorders. Vegetation structure and aerial insect availability were sampled at the recording sites and used as explanatory variables in the model. In a paired sampling design, we found twice the number of bat species (12) and five times higher total foraging activity in the managed chestnut orchards compared to the unmanaged ones. Bat species with low flight manoeuvrability were 14 times more common in managed orchards, whereas bats with medium to high manoeuvrability were only 5 times more common than in abandoned orchards. The vegetation structure was less dense in managed orchards. However, management did not affect relative insect abundance. Bats primarily visited the most open orchards, free of undergrowth. As a result of restricted access into the overgrown forests, the abandonment of chestnut orchards leads to a decline in bat species richness and foraging activities. Continued management of chestnut orchards to maintain an open structure is important for the conservation of endangered bat species in the southern Swiss Alps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Objectives: Interspecific variation in sleep measured in captivity correlates with various physiological and environmental factors, including estimates of predation risk in the wild. However, it remains unclear whether prior comparative studies have been confounded by the captive recording environment. Herein we examine the impact of predation pressure on sleep in sloths living in the wild. Design: Comparison of two closely related sloth species, one exposed to predation and one free from predation. Setting: Panamanian mainland rainforest (predators present) and island mangrove (predators absent). Participants: Mainland (Bradypus variegatus, 5 males and 4 females) and island (Bradypus pygmaeus, 6 males) sloths. Interventions: None. Measurements and Results: EEG and EMG activity were recorded using a miniature data logger. Although both species spent between 9 and 10 hours per day sleeping, the mainland sloths showed a preference for sleeping at night, whereas island sloths showed no preference for sleeping during the day or night. EEG activity during NREM sleep showed lower low-frequency power, and increased spindle and higher frequency power in island sloths when compared to mainland sloths. Conclusions: In sloths sleeping in the wild, predation pressure influenced the timing of sleep, but not the amount of time spent asleep. The preference for sleeping at night in mainland sloths may be a strategy to avoid detection by nocturnal cats. The pronounced differences in the NREM sleep EEG spectrum remain unexplained, but might be related to genetic or environmental factors.