2 resultados para Food Analysis
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Children with atopic diseases in early life are frequently found with positive IgE tests to peanuts/tree nuts without a history of previous ingestion. We aimed to identify risk factors for reactions to nuts at first introduction. METHODS: A retrospective case-note and database analysis was performed. Recruitment criteria were: patients aged 3-16 yr who had a standardized food challenge to peanut and/or tree nuts due to sensitisation to the peanut/tree nut (positive spIgE or SPT) without previous consumption. A detailed assessment was performed of factors relating to food challenge outcome with univariate and multivariate logistic regression analysis. RESULTS: There were 98 food challenges (47 peanut, 51 tree nut) with 29 positive, 67 negative and 2 inconclusive outcomes. A positive maternal history of allergy and a specific IgE >5 kU/l were strongly associated with a significantly increased risk of a positive food challenge (OR 3.73; 95% CI 1.31-10.59; p = 0.013 and OR 3.35; 95% CI 1.23-9.11; p = 0.007, respectively). Adjusting for age, a three year-old with these criteria has a 67% probability of a positive challenge. There was no significant association between types of peanut/tree nut, other food allergies, atopic conditions or severity of previous food reactions and positive challenges. CONCLUSIONS: We have demonstrated an association between the presence of maternal atopic history and a specific IgE >5 kU/l, with a significant increase in the likelihood of a positive food challenge. Although requiring further prospective validation these easily identifiable components should be considered when deciding the need for a challenge.
Resumo:
Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (β [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.