28 resultados para Finite volume method.

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel hybrid (or multiphysics) algorithm, which couples pore-scale and Darcy descriptions of two-phase flow in porous media. The flow at the pore-scale is described by the Navier?Stokes equations, and the Volume of Fluid (VOF) method is used to model the evolution of the fluid?fluid interface. An extension of the Multiscale Finite Volume (MsFV) method is employed to construct the Darcy-scale problem. First, a set of local interpolators for pressure and velocity is constructed by solving the Navier?Stokes equations; then, a coarse mass-conservation problem is constructed by averaging the pore-scale velocity over the cells of a coarse grid, which act as control volumes; finally, a conservative pore-scale velocity field is reconstructed and used to advect the fluid?fluid interface. The method relies on the localization assumptions used to compute the interpolators (which are quite straightforward extensions of the standard MsFV) and on the postulate that the coarse-scale fluxes are proportional to the coarse-pressure differences. By numerical simulations of two-phase problems, we demonstrate that these assumptions provide hybrid solutions that are in good agreement with reference pore-scale solutions and are able to model the transition from stable to unstable flow regimes. Our hybrid method can naturally take advantage of several adaptive strategies and allows considering pore-scale fluxes only in some regions, while Darcy fluxes are used in the rest of the domain. Moreover, since the method relies on the assumption that the relationship between coarse-scale fluxes and pressure differences is local, it can be used as a numerical tool to investigate the limits of validity of Darcy's law and to understand the link between pore-scale quantities and their corresponding Darcy-scale variables.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an extension of the multi-scale finite-volume (MSFV) method is devised, which allows to Simulate flow and transport in reservoirs with complex well configurations. The new framework fits nicely into the data Structure of the original MSFV method,and has the important property that large patches covering the whole well are not required. For each well. an additional degree of freedom is introduced. While the treatment of pressure-constraint wells is trivial (the well-bore reference pressure is explicitly specified), additional equations have to be solved to obtain the unknown well-bore pressure of rate-constraint wells. Numerical Simulations of test cases with multiple complex wells demonstrate the ability of the new algorithm to capture the interference between the various wells and the reservoir accurately. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Multiscale Finite Volume (MsFV) method has been developed to efficiently solve reservoir-scale problems while conserving fine-scale details. The method employs two grid levels: a fine grid and a coarse grid. The latter is used to calculate a coarse solution to the original problem, which is interpolated to the fine mesh. The coarse system is constructed from the fine-scale problem using restriction and prolongation operators that are obtained by introducing appropriate localization assumptions. Through a successive reconstruction step, the MsFV method is able to provide an approximate, but fully conservative fine-scale velocity field. For very large problems (e.g. one billion cell model), a two-level algorithm can remain computational expensive. Depending on the upscaling factor, the computational expense comes either from the costs associated with the solution of the coarse problem or from the construction of the local interpolators (basis functions). To ensure numerical efficiency in the former case, the MsFV concept can be reapplied to the coarse problem, leading to a new, coarser level of discretization. One challenge in the use of a multilevel MsFV technique is to find an efficient reconstruction step to obtain a conservative fine-scale velocity field. In this work, we introduce a three-level Multiscale Finite Volume method (MlMsFV) and give a detailed description of the reconstruction step. Complexity analyses of the original MsFV method and the new MlMsFV method are discussed, and their performances in terms of accuracy and efficiency are compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiscale finite-volume (MSFV) method has been derived to efficiently solve large problems with spatially varying coefficients. The fine-scale problem is subdivided into local problems that can be solved separately and are coupled by a global problem. This algorithm, in consequence, shares some characteristics with two-level domain decomposition (DD) methods. However, the MSFV algorithm is different in that it incorporates a flux reconstruction step, which delivers a fine-scale mass conservative flux field without the need for iterating. This is achieved by the use of two overlapping coarse grids. The recently introduced correction function allows for a consistent handling of source terms, which makes the MSFV method a flexible algorithm that is applicable to a wide spectrum of problems. It is demonstrated that the MSFV operator, used to compute an approximate pressure solution, can be equivalently constructed by writing the Schur complement with a tangential approximation of a single-cell overlapping grid and incorporation of appropriate coarse-scale mass-balance equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this paper is to propose a convergent finite volume method for a reactionâeuro"diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to Kruzhkov. The proofs of these results are given in the Appendix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projection method. In particular, the stabilization of the continuous lowest equal order pair finite volume element discretization is achieved by enriching the velocity space with local functions that do not necessarily vanish on the element boundaries. Finally, some numerical experiments that confirm the predicted behavior of the method are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiscale finite volume (MsFV) method has been developed to efficiently solve large heterogeneous problems (elliptic or parabolic); it is usually employed for pressure equations and delivers conservative flux fields to be used in transport problems. The method essentially relies on the hypothesis that the (fine-scale) problem can be reasonably described by a set of local solutions coupled by a conservative global (coarse-scale) problem. In most cases, the boundary conditions assigned for the local problems are satisfactory and the approximate conservative fluxes provided by the method are accurate. In numerically challenging cases, however, a more accurate localization is required to obtain a good approximation of the fine-scale solution. In this paper we develop a procedure to iteratively improve the boundary conditions of the local problems. The algorithm relies on the data structure of the MsFV method and employs a Krylov-subspace projection method to obtain an unconditionally stable scheme and accelerate convergence. Two variants are considered: in the first, only the MsFV operator is used; in the second, the MsFV operator is combined in a two-step method with an operator derived from the problem solved to construct the conservative flux field. The resulting iterative MsFV algorithms allow arbitrary reduction of the solution error without compromising the construction of a conservative flux field, which is guaranteed at any iteration. Since it converges to the exact solution, the method can be regarded as a linear solver. In this context, the schemes proposed here can be viewed as preconditioned versions of the Generalized Minimal Residual method (GMRES), with a very peculiar characteristic that the residual on the coarse grid is zero at any iteration (thus conservative fluxes can be obtained).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiscale finite-volume (MSFV) method is designed to reduce the computational cost of elliptic and parabolic problems with highly heterogeneous anisotropic coefficients. The reduction is achieved by splitting the original global problem into a set of local problems (with approximate local boundary conditions) coupled by a coarse global problem. It has been shown recently that the numerical errors in MSFV results can be reduced systematically with an iterative procedure that provides a conservative velocity field after any iteration step. The iterative MSFV (i-MSFV) method can be obtained with an improved (smoothed) multiscale solution to enhance the localization conditions, with a Krylov subspace method [e.g., the generalized-minimal-residual (GMRES) algorithm] preconditioned by the MSFV system, or with a combination of both. In a multiphase-flow system, a balance between accuracy and computational efficiency should be achieved by finding a minimum number of i-MSFV iterations (on pressure), which is necessary to achieve the desired accuracy in the saturation solution. In this work, we extend the i-MSFV method to sequential implicit simulation of time-dependent problems. To control the error of the coupled saturation/pressure system, we analyze the transport error caused by an approximate velocity field. We then propose an error-control strategy on the basis of the residual of the pressure equation. At the beginning of simulation, the pressure solution is iterated until a specified accuracy is achieved. To minimize the number of iterations in a multiphase-flow problem, the solution at the previous timestep is used to improve the localization assumption at the current timestep. Additional iterations are used only when the residual becomes larger than a specified threshold value. Numerical results show that only a few iterations on average are necessary to improve the MSFV results significantly, even for very challenging problems. Therefore, the proposed adaptive strategy yields efficient and accurate simulation of multiphase flow in heterogeneous porous media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate modeling of flow instabilities requires computational tools able to deal with several interacting scales, from the scale at which fingers are triggered up to the scale at which their effects need to be described. The Multiscale Finite Volume (MsFV) method offers a framework to couple fine-and coarse-scale features by solving a set of localized problems which are used both to define a coarse-scale problem and to reconstruct the fine-scale details of the flow. The MsFV method can be seen as an upscaling-downscaling technique, which is computationally more efficient than standard discretization schemes and more accurate than traditional upscaling techniques. We show that, although the method has proven accurate in modeling density-driven flow under stable conditions, the accuracy of the MsFV method deteriorates in case of unstable flow and an iterative scheme is required to control the localization error. To avoid large computational overhead due to the iterative scheme, we suggest several adaptive strategies both for flow and transport. In particular, the concentration gradient is used to identify a front region where instabilities are triggered and an accurate (iteratively improved) solution is required. Outside the front region the problem is upscaled and both flow and transport are solved only at the coarse scale. This adaptive strategy leads to very accurate solutions at roughly the same computational cost as the non-iterative MsFV method. In many circumstances, however, an accurate description of flow instabilities requires a refinement of the computational grid rather than a coarsening. For these problems, we propose a modified iterative MsFV, which can be used as downscaling method (DMsFV). Compared to other grid refinement techniques the DMsFV clearly separates the computational domain into refined and non-refined regions, which can be treated separately and matched later. This gives great flexibility to employ different physical descriptions in different regions, where different equations could be solved, offering an excellent framework to construct hybrid methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les instabilités engendrées par des gradients de densité interviennent dans une variété d'écoulements. Un exemple est celui de la séquestration géologique du dioxyde de carbone en milieux poreux. Ce gaz est injecté à haute pression dans des aquifères salines et profondes. La différence de densité entre la saumure saturée en CO2 dissous et la saumure environnante induit des courants favorables qui le transportent vers les couches géologiques profondes. Les gradients de densité peuvent aussi être la cause du transport indésirable de matières toxiques, ce qui peut éventuellement conduire à la pollution des sols et des eaux. La gamme d'échelles intervenant dans ce type de phénomènes est très large. Elle s'étend de l'échelle poreuse où les phénomènes de croissance des instabilités s'opèrent, jusqu'à l'échelle des aquifères à laquelle interviennent les phénomènes à temps long. Une reproduction fiable de la physique par la simulation numérique demeure donc un défi en raison du caractère multi-échelles aussi bien au niveau spatial et temporel de ces phénomènes. Il requiert donc le développement d'algorithmes performants et l'utilisation d'outils de calculs modernes. En conjugaison avec les méthodes de résolution itératives, les méthodes multi-échelles permettent de résoudre les grands systèmes d'équations algébriques de manière efficace. Ces méthodes ont été introduites comme méthodes d'upscaling et de downscaling pour la simulation d'écoulements en milieux poreux afin de traiter de fortes hétérogénéités du champ de perméabilité. Le principe repose sur l'utilisation parallèle de deux maillages, le premier est choisi en fonction de la résolution du champ de perméabilité (grille fine), alors que le second (grille grossière) est utilisé pour approximer le problème fin à moindre coût. La qualité de la solution multi-échelles peut être améliorée de manière itérative pour empêcher des erreurs trop importantes si le champ de perméabilité est complexe. Les méthodes adaptatives qui restreignent les procédures de mise à jour aux régions à forts gradients permettent de limiter les coûts de calculs additionnels. Dans le cas d'instabilités induites par des gradients de densité, l'échelle des phénomènes varie au cours du temps. En conséquence, des méthodes multi-échelles adaptatives sont requises pour tenir compte de cette dynamique. L'objectif de cette thèse est de développer des algorithmes multi-échelles adaptatifs et efficaces pour la simulation des instabilités induites par des gradients de densité. Pour cela, nous nous basons sur la méthode des volumes finis multi-échelles (MsFV) qui offre l'avantage de résoudre les phénomènes de transport tout en conservant la masse de manière exacte. Dans la première partie, nous pouvons démontrer que les approximations de la méthode MsFV engendrent des phénomènes de digitation non-physiques dont la suppression requiert des opérations de correction itératives. Les coûts de calculs additionnels de ces opérations peuvent toutefois être compensés par des méthodes adaptatives. Nous proposons aussi l'utilisation de la méthode MsFV comme méthode de downscaling: la grille grossière étant utilisée dans les zones où l'écoulement est relativement homogène alors que la grille plus fine est utilisée pour résoudre les forts gradients. Dans la seconde partie, la méthode multi-échelle est étendue à un nombre arbitraire de niveaux. Nous prouvons que la méthode généralisée est performante pour la résolution de grands systèmes d'équations algébriques. Dans la dernière partie, nous focalisons notre étude sur les échelles qui déterminent l'évolution des instabilités engendrées par des gradients de densité. L'identification de la structure locale ainsi que globale de l'écoulement permet de procéder à un upscaling des instabilités à temps long alors que les structures à petite échelle sont conservées lors du déclenchement de l'instabilité. Les résultats présentés dans ce travail permettent d'étendre les connaissances des méthodes MsFV et offrent des formulations multi-échelles efficaces pour la simulation des instabilités engendrées par des gradients de densité. - Density-driven instabilities in porous media are of interest for a wide range of applications, for instance, for geological sequestration of CO2, during which CO2 is injected at high pressure into deep saline aquifers. Due to the density difference between the C02-saturated brine and the surrounding brine, a downward migration of CO2 into deeper regions, where the risk of leakage is reduced, takes place. Similarly, undesired spontaneous mobilization of potentially hazardous substances that might endanger groundwater quality can be triggered by density differences. Over the last years, these effects have been investigated with the help of numerical groundwater models. Major challenges in simulating density-driven instabilities arise from the different scales of interest involved, i.e., the scale at which instabilities are triggered and the aquifer scale over which long-term processes take place. An accurate numerical reproduction is possible, only if the finest scale is captured. For large aquifers, this leads to problems with a large number of unknowns. Advanced numerical methods are required to efficiently solve these problems with today's available computational resources. Beside efficient iterative solvers, multiscale methods are available to solve large numerical systems. Originally, multiscale methods have been developed as upscaling-downscaling techniques to resolve strong permeability contrasts. In this case, two static grids are used: one is chosen with respect to the resolution of the permeability field (fine grid); the other (coarse grid) is used to approximate the fine-scale problem at low computational costs. The quality of the multiscale solution can be iteratively improved to avoid large errors in case of complex permeability structures. Adaptive formulations, which restrict the iterative update to domains with large gradients, enable limiting the additional computational costs of the iterations. In case of density-driven instabilities, additional spatial scales appear which change with time. Flexible adaptive methods are required to account for these emerging dynamic scales. The objective of this work is to develop an adaptive multiscale formulation for the efficient and accurate simulation of density-driven instabilities. We consider the Multiscale Finite-Volume (MsFV) method, which is well suited for simulations including the solution of transport problems as it guarantees a conservative velocity field. In the first part of this thesis, we investigate the applicability of the standard MsFV method to density- driven flow problems. We demonstrate that approximations in MsFV may trigger unphysical fingers and iterative corrections are necessary. Adaptive formulations (e.g., limiting a refined solution to domains with large concentration gradients where fingers form) can be used to balance the extra costs. We also propose to use the MsFV method as downscaling technique: the coarse discretization is used in areas without significant change in the flow field whereas the problem is refined in the zones of interest. This enables accounting for the dynamic change in scales of density-driven instabilities. In the second part of the thesis the MsFV algorithm, which originally employs one coarse level, is extended to an arbitrary number of coarse levels. We prove that this keeps the MsFV method efficient for problems with a large number of unknowns. In the last part of this thesis, we focus on the scales that control the evolution of density fingers. The identification of local and global flow patterns allows a coarse description at late times while conserving fine-scale details during onset stage. Results presented in this work advance the understanding of the Multiscale Finite-Volume method and offer efficient dynamic multiscale formulations to simulate density-driven instabilities. - Les nappes phréatiques caractérisées par des structures poreuses et des fractures très perméables représentent un intérêt particulier pour les hydrogéologues et ingénieurs environnementaux. Dans ces milieux, une large variété d'écoulements peut être observée. Les plus communs sont le transport de contaminants par les eaux souterraines, le transport réactif ou l'écoulement simultané de plusieurs phases non miscibles, comme le pétrole et l'eau. L'échelle qui caractérise ces écoulements est définie par l'interaction de l'hétérogénéité géologique et des processus physiques. Un fluide au repos dans l'espace interstitiel d'un milieu poreux peut être déstabilisé par des gradients de densité. Ils peuvent être induits par des changements locaux de température ou par dissolution d'un composé chimique. Les instabilités engendrées par des gradients de densité revêtent un intérêt particulier puisque qu'elles peuvent éventuellement compromettre la qualité des eaux. Un exemple frappant est la salinisation de l'eau douce dans les nappes phréatiques par pénétration d'eau salée plus dense dans les régions profondes. Dans le cas des écoulements gouvernés par les gradients de densité, les échelles caractéristiques de l'écoulement s'étendent de l'échelle poreuse où les phénomènes de croissance des instabilités s'opèrent, jusqu'à l'échelle des aquifères sur laquelle interviennent les phénomènes à temps long. Etant donné que les investigations in-situ sont pratiquement impossibles, les modèles numériques sont utilisés pour prédire et évaluer les risques liés aux instabilités engendrées par les gradients de densité. Une description correcte de ces phénomènes repose sur la description de toutes les échelles de l'écoulement dont la gamme peut s'étendre sur huit à dix ordres de grandeur dans le cas de grands aquifères. Il en résulte des problèmes numériques de grande taille qui sont très couteux à résoudre. Des schémas numériques sophistiqués sont donc nécessaires pour effectuer des simulations précises d'instabilités hydro-dynamiques à grande échelle. Dans ce travail, nous présentons différentes méthodes numériques qui permettent de simuler efficacement et avec précision les instabilités dues aux gradients de densité. Ces nouvelles méthodes sont basées sur les volumes finis multi-échelles. L'idée est de projeter le problème original à une échelle plus grande où il est moins coûteux à résoudre puis de relever la solution grossière vers l'échelle de départ. Cette technique est particulièrement adaptée pour résoudre des problèmes où une large gamme d'échelle intervient et évolue de manière spatio-temporelle. Ceci permet de réduire les coûts de calculs en limitant la description détaillée du problème aux régions qui contiennent un front de concentration mobile. Les aboutissements sont illustrés par la simulation de phénomènes tels que l'intrusion d'eau salée ou la séquestration de dioxyde de carbone.