45 resultados para Finite model generation

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. METHODS: The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. RESULTS: The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. CONCLUSION: The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cross-recognition of peptides by cytotoxic T lymphocytes is a key element in immunology and in particular in peptide based immunotherapy. Here we develop three-dimensional (3D) quantitative structure-activity relationships (QSARs) to predict cross-recognition by Melan-A-specific cytotoxic T lymphocytes of peptides bound to HLA A*0201 (hereafter referred to as HLA A2). First, we predict the structure of a set of self- and pathogen-derived peptides bound to HLA A2 using a previously developed ab initio structure prediction approach [Fagerberg et al., J. Mol. Biol., 521-46 (2006)]. Second, shape and electrostatic energy calculations are performed on a 3D grid to produce similarity matrices which are combined with a genetic neural network method [So et al., J. Med. Chem., 4347-59 (1997)] to generate 3D-QSAR models. The models are extensively validated using several different approaches. During the model generation, the leave-one-out cross-validated correlation coefficient (q (2)) is used as the fitness criterion and all obtained models are evaluated based on their q (2) values. Moreover, the best model obtained for a partitioned data set is evaluated by its correlation coefficient (r = 0.92 for the external test set). The physical relevance of all models is tested using a functional dependence analysis and the robustness of the models obtained for the entire data set is confirmed using y-randomization. Finally, the validated models are tested for their utility in the setting of rational peptide design: their ability to discriminate between peptides that only contain side chain substitutions in a single secondary anchor position is evaluated. In addition, the predicted cross-recognition of the mono-substituted peptides is confirmed experimentally in chromium-release assays. These results underline the utility of 3D-QSARs in peptide mimetic design and suggest that the properties of the unbound epitope are sufficient to capture most of the information to determine the cross-recognition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Total ankle replacement remains a less satisfactory solution compared to other joint replacements. The goal of this study was to develop and validate a finite element model of total ankle replacement, for future testing of hypotheses related to clinical issues. To validate the finite element model, an experimental setup was specifically developed and applied on 8 cadaveric tibias. A non-cemented press fit tibial component of a mobile bearing prosthesis was inserted into the tibias. Two extreme anterior and posterior positions of the mobile bearing insert were considered, as well as a centered one. An axial force of 2kN was applied for each insert position. Strains were measured on the bone surface using digital image correlation. Tibias were CT scanned before implantation, after implantation, and after mechanical tests and removal of the prosthesis. The finite element model replicated the experimental setup. The first CT was used to build the geometry and evaluate the mechanical properties of the tibias. The second CT was used to set the implant position. The third CT was used to assess the bone-implant interface conditions. The coefficient of determination (R-squared) between the measured and predicted strains was 0.91. Predicted bone strains were maximal around the implant keel, especially at the anterior and posterior ends. The finite element model presented here is validated for future tests using more physiological loading conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D) gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microsatellite loci mutate at an extremely high rate and are generally thought to evolve through a stepwise mutation model. Several differentiation statistics taking into account the particular mutation scheme of the microsatellite have been proposed. The most commonly used is R(ST) which is independent of the mutation rate under a generalized stepwise mutation model. F(ST) and R(ST) are commonly reported in the literature, but often differ widely. Here we compare their statistical performances using individual-based simulations of a finite island model. The simulations were run under different levels of gene flow, mutation rates, population number and sizes. In addition to the per locus statistical properties, we compare two ways of combining R(ST) over loci. Our simulations show that even under a strict stepwise mutation model, no statistic is best overall. All estimators suffer to different extents from large bias and variance. While R(ST) better reflects population differentiation in populations characterized by very low gene-exchange, F(ST) gives better estimates in cases of high levels of gene flow. The number of loci sampled (12, 24, or 96) has only a minor effect on the relative performance of the estimators under study. For all estimators there is a striking effect of the number of samples, with the differentiation estimates showing very odd distributions for two samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main goal of this paper is to propose a convergent finite volume method for a reactionâeuro"diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to Kruzhkov. The proofs of these results are given in the Appendix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies evaluating the mechanical behavior of the trabecular microstructure play an important role in our understanding of pathologies such as osteoporosis, and in increasing our understanding of bone fracture and bone adaptation. Understanding of such behavior in bone is important for predicting and providing early treatment of fractures. The objective of this study is to present a numerical model for studying the initiation and accumulation of trabecular bone microdamage in both the pre- and post-yield regions. A sub-region of human vertebral trabecular bone was analyzed using a uniformly loaded anatomically accurate microstructural three-dimensional finite element model. The evolution of trabecular bone microdamage was governed using a non-linear, modulus reduction, perfect damage approach derived from a generalized plasticity stress-strain law. The model introduced in this paper establishes a history of microdamage evolution in both the pre- and post-yield regions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein S (PS) is an important natural anticoagulant with potentially multiple biologic functions. To investigate further the role of PS in vivo, we generated Pros(+/-) heterozygous mice. In the null (-) allele, the Pros exons 3 to 7 have been excised through conditional gene targeting. Pros(+/-) mice did not present any signs of spontaneous thrombosis and had reduced PS plasma levels and activated protein C cofactor activity in plasma coagulation and thrombin generation assays. Tissue factor pathway inhibitor cofactor activity of PS could not be demonstrated. Heterozygous Pros(+/-) mice exhibited a notable thrombotic phenotype in vivo when challenged in a tissue factor-induced thromboembolism model. No viable Pros(-/-) mice were obtained through mating of Pros(+/-) parents. Most E17.5 Pros(-/-) embryos were found dead with severe intracranial hemorrhages and most likely presented consumptive coagulopathy, as demonstrated by intravascular and interstitial fibrin deposition and an increased number of megakaryocytes in the liver, suggesting peripheral thrombocytopenia. A few E17.5 Pros(-/-) embryos had less severe phenotype, indicating that life-threatening manifestations might occur between E17.5 and the full term. Thus, similar to human phenotypes, mild heterozygous PS deficiency in mice was associated with a thrombotic phenotype, whereas total homozygous deficiency in PS was incompatible with life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of a quantitative phenotype is often envisioned as a trait substitution sequence where mutant alleles repeatedly replace resident ones. In infinite populations, the invasion fitness of a mutant in this two-allele representation of the evolutionary process is used to characterize features about long-term phenotypic evolution, such as singular points, convergence stability (established from first-order effects of selection), branching points, and evolutionary stability (established from second-order effects of selection). Here, we try to characterize long-term phenotypic evolution in finite populations from this two-allele representation of the evolutionary process. We construct a stochastic model describing evolutionary dynamics at non-rare mutant allele frequency. We then derive stability conditions based on stationary average mutant frequencies in the presence of vanishing mutation rates. We find that the second-order stability condition obtained from second-order effects of selection is identical to convergence stability. Thus, in two-allele systems in finite populations, convergence stability is enough to characterize long-term evolution under the trait substitution sequence assumption. We perform individual-based simulations to confirm our analytic results.