25 resultados para Fine-structure Constant

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 6008 base pair fragment of the vaccinia virus DNA containing the gene for the precursor of the major core protein 4 a, which has been designated P4 a, was sequenced. A long open reading frame (ORF) encoding a protein of molecular weight 102,157 started close to the position where the P4 a mRNA had been mapped. Analysis of the mRNA by S1 nuclease mapping and primer extension indicated that the 5' end defined by the former method is not the true 5' end. This suggests that the P4 a coding region is preceded by leader sequences that are not derived from the immediate vicinity of the gene, similar to what has been reported for another late vaccinia virus mRNA. The sequenced DNA contained several further ORFs on the same, or opposite DNA strand, providing further evidence for the close spacing of protein-coding sequences in the viral genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural organization and the coding nucleotide sequence of the Xenopus laevis A2 and the chicken major vitellogenin genes have been compared. Both genes show the same exon-intron organization. However, the degree of homology between the nucleotide and derived amino acid sequences varies extensively along the genes. Several of the 35 exons are quite similar, and a unique cysteine motif in the lipovitellin II domain is conserved between the two genes. In contrast, one internal region is quite divergent. Part of this region encodes phosvitin, which appears to have evolved rapidly by both point mutations and duplications of serines or short other amino acid stretches. On the basis of these observations, we discuss the possible mechanism of evolution of phosvitin in vertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major antigen on the envelope of extracellular vaccinia virus particles is a polypeptide with an apparent molecular weight of 37,000 (p37K; G. Hiller and K. Weber, J. Virol. 55:651-659, 1985). The gene encoding p37K was mapped in the vaccinia virus genome by hybrid selection of RNA followed by in vitro translation. p37K was then identified among the in vitro translation products by immunoprecipitation with a monoclonal antibody. The gene is located close to the right-hand end of the HindIII F fragment. The corresponding region of the DNA was sequenced, and an open reading frame encoding a polypeptide of 41,748 daltons was observed. The 5' end of the mRNA, as defined by nuclease S1 analysis, maps within only a few nucleotides of the translation initiation codon. Examination of the DNA sequence around the putative initiation site of transcription revealed a characteristic sequence, TAAATG, which includes the ATG translation initiation codon and which is conserved in all but one late gene so far analyzed. It is therefore likely that this sequence is an important regulatory signal for late gene expression in vaccinia virus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cdc10 gene of the fission yeast Schizosaccharomyces pombe is required for traverse of start and commitment to the mitotic cell division cycle rather than other fates. The product of the gene, p85cdc10, is a component of a factor that is thought to be involved in regulating the transcription of genes that are required for DNA synthesis. In order to define regions of the p85cdc10 protein that are important for its function a fine structure genetic map of the cdc10 gene was derived and the sequences of 13 cdc10ts mutants determined. The 13 mutants tested define eight alleles. Eleven of the mutants are located in the region that contains the two copies of the cdc10/SWI6 repeat motif, implicating it as important for p85cdc10 function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: During hibernation the kidney is in a hypothermic condition where renal blood flow is minimal and urine production is much reduced. Periodical arousal from hibernation is associated with kidney reperfusion at increasing body temperature, and restored urine production rate. METHODS: To assess the degree of structural preservation during such extreme conditions, the kidney cortex was investigated by means of electron microscopy in the dormouse Muscardinus avellanarius during winter hibernation, arousal from hibernation and the summer active period. RESULTS: Results show that the fine structure of the kidney cortex is well preserved during hibernation. In the renal corpuscle, a sign of slight lesion was the focal presence of oedematous endothelial cells and/or podocytes. Proximal convoluted tubule cells showed fully preserved ultrastructure and polarity, and hypertrophic apical endocytic apparatus. Structural changes were associated with increased plasma electrolytes, creatinine and urea nitrogen, and proteinuria. During the process of arousal the fine structure of the kidney cortex was also well maintained. CONCLUSION: These results demonstrate that dormice are able to fully preserve kidney cortex structure under extreme conditions resembling e.g. severe ischaemia or hypothermic organ storage for transplantation, and reperfusion. Elucidation of the mechanisms involved in such a natural model of organ preservation could be relevant to human medicine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To report on clinical corneal topography, histopathologic analysis, and fine structure findings in failed grafts after penetrating keratoplasty (PK) for keratoconus (KC). DESIGN: Retrospective, consecutive, interventional case series with histologic and clinical correlation. PARTICIPANTS: Twelve corneal buttons were obtained from consecutive patients undergoing repeated PK 10 to 28 years after the initial PK for KC. The indication for regrafting was endothelial deficiency in seven cases, irreversible immune graft rejection in two cases, and corneal ectasia in three cases. METHODS: Removed corneal buttons were examined by light and transmission electron microscopy. A potential correlation between the clinical and videokeratoscopic findings and the microscopic structural observations was analyzed. RESULTS: Preoperative simulated keratometry measured by TMS-1 (Tomey, New York, NY) or EyeSys CAS (EyeSys Technology, Houston, TX) ranged from 49.8 to 66.1 diopters. A pattern compatible with KC characteristics was observed in all cases. Fine structure analysis revealed Bowman's layer disruption or folds and stromal deposits in all corneal buttons. However, central corneal thinning was not present in any of the removed buttons. CONCLUSIONS: Structure changes compatible with the diagnosis of KC were observed in all donor buttons many years after PK on KC recipients. Recurrence of the KC characteristics may result from graft repopulation by recipients' keratocytes, aging of the grafted tissue, or both.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Birnessites precipitated by bacteria are typically poorly crystalline Mn(IV) oxides enmeshed within biofilms to form complex biomass-birnessite assemblages. The strong sorption affinity of bacteriogenic birnessites for environmentally important trace metals is relatively well understood mechanistically, but the role of bacterial cells and extracellular polymeric substances appears to vary among trace metals. To assess the role of biomass definitively, comparison between metal sorption by biomass at high metal loadings in the presence and absence of birnessite is required. We investigated the biomass effect on Ni sorption through laboratory experiments utilizing the birnessite produced by the model bacterium, Pseudomonas putida. Surface excess measurements at pH 6?8 showed that birnessite significantly enhanced Ni sorption at high loadings (up to nearly 4-fold) relative to biomass alone. This apparent large difference in affinity for Ni between the organic and mineral components was confirmed by extended X-ray absorption fine structure spectroscopy, which revealed preferential Ni binding to birnessite cation vacancy sites. At pH >= 7, Ni sorption involved both adsorption and precipitation reactions. Our results thus support the view that the biofilm does not block reactive mineral surface sites; instead, the organic material contributes to metal sorption once high-affinity sites on the mineral are saturated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Very high concentrations of uranium (up to 4000 ppm) were found in a natural soil in the Dischma valley, an alpine region in the Grisons canton in Switzerland. The goal of this study was to examine the redox state and the nature of uranium binding in the soil matrix in order to understand the accumulation mechanism. Pore water profiles collected from Dischma soil revealed the establishment of anoxic conditions with increasing soil depth. A combination of chemical extraction methods and spectroscopy was applied to characterize the redox state and binding environment of uranium in the soil. Bicarbonate extraction under anoxic conditions released most of the uranium indicating that uranium occurs predominantly in the hexavalent form. Surprisingly, the uranium redox state did not vary greatly as a function of depth. X-ray absorption near edge spectroscopy (XANES), confirmed that uranium was present as a mixture of U(VI) and U(IV) with U(VI) dominating. Sequential extractions of soil samples showed that the dissolution of solid organic matter resulted in the simultaneous release of the majority of the soil uranium content (>95%). Extended X-ray absorption fine structure (EXAFS) spectroscopy also revealed that soil-associated uranium in the soil matrix was mainly octahedrally coordinated, with an average of 1.7 axial (at about 1.76 Å) and 4.6 to 5.3 equatorial oxygen atoms (at about 2.36 Å) indicating the dominance of a uranyl-like (UO22+) structure presumably mixed with some U(IV). An additional EXAFS signal (at about 3.2 Å) identified in some spectra suggested that uranium was also bound (via an oxygen atom) to a light element such as carbon, phosphorus or silicon. Gamma spectrometric measurements of soil profiles failed to identify uranium long-life daughter products in the soil which is an indication that uranium originates elsewhere and was transported to its current location by water. Finally, it was found that the release of uranium from the soil was significantly promoted at very low pH values (pH 2) and increased with increasing pH values (between pH 5 and 9).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mating plugs occluding the female gonopore after mating are a widespread phenomenon. In scorpions, two main types of mating plugs are found: sclerotized mating plugs being parts of the spermatophore that break off during mating, and gel-like mating plugs being gelatinous fluids that harden in the female genital tract. In this study, the gel-like mating plug of Euscorpius italicus was investigated with respect to its composition, fine structure, and changes over time. Sperm forms the major component of the mating plug, a phenomenon previously unknown in arachnids. Three parts of the mating plug can be distinguished. The part facing the outside of the female (outer part) contains sperm packages containing inactive spermatozoa. In this state, sperm is transferred. In the median part, the sperm packages get uncoiled to single spermatozoa. In the inner part, free sperm is embedded in a large amount of secretions. Fresh mating plugs are soft gelatinous, later they harden from outside toward inside. This process is completed after 3-5 days. Sperm from artificially triggered spermatophores could be activated by immersion in insect Ringer's solution indicating that the fluid condition in the females' genital tract or females' secretions causes sperm activation. Because of the male origin of the mating plug, it has likely evolved under sperm competition or sexual conflict. As females refused to remate irrespective of the presence or absence of a mating plug, females may have changed their mating behavior in the course of evolution from polyandry to monandry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plants are sessile organisms, often characterized by limited dispersal. Seeds and pollen are the critical stages for gene flow. Here we investigate spatial genetic structure, gene dispersal and the relative contribution of pollen vs seed in the movement of genes in a stable metapopulation of the white campion Silene latifolia within its native range. This short-lived perennial plant is dioecious, has gravity-dispersed seeds and moth-mediated pollination. Direct measures of pollen dispersal suggested that large populations receive more pollen than small isolated populations and that most gene flow occurs within tens of meters. However, these studies were performed in the newly colonized range (North America) where the specialist pollinator is absent. In the native range (Europe), gene dispersal could fall on a different spatial scale. We genotyped 258 individuals from large and small (15) subpopulations along a 60 km, elongated metapopulation in Europe using six highly variable microsatellite markers, two X-linked and four autosomal. We found substantial genetic differentiation among subpopulations (global F(ST)=0.11) and a general pattern of isolation by distance over the whole sampled area. Spatial autocorrelation revealed high relatedness among neighboring individuals over hundreds of meters. Estimates of gene dispersal revealed gene flow at the scale of tens of meters (5-30 m), similar to the newly colonized range. Contrary to expectations, estimates of dispersal based on X and autosomal markers showed very similar ranges, suggesting similar levels of pollen and seed dispersal. This may be explained by stochastic events of extensive seed dispersal in this area and limited pollen dispersal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evolutionary processes acting at the expanding margins of a species' range are still poorly understood. Genetic drift is considered prevalent in marginal populations, and the maintenance of genetic diversity during recolonization might seem puzzling. To investigate such processes, a fine-scale investigation of 219 individuals was performed within a population of Biscutella laevigata (Brassicaceae), located at the leading edge of its range. The survey used amplified fragment length polymorphisms (AFLPs). As commonly reported across the whole species distribution range, individual density and genetic diversity decreased along the local axis of recolonization of this expanding population, highlighting the enduring effect of the historical colonization on present-day diversity. The self-incompatibility system of the plant may have prevented local inbreeding in newly found patches and sustained genetic diversity by ensuring gene flow from established populations. Within the more continuously populated region, spatial analysis of genetic structure revealed restricted gene flow among individuals. The distribution of genotypes formed a mosaic of relatively homogenous patches within the continuous population. This pattern could be explained by a history of expansion by long-distance dispersal followed by fine-scale diffusion (that is, a stratified dispersal combination). The secondary contact among expanding patches apparently led to admixture among differentiated genotypes where they met (that is, a reshuffling effect). This type of dynamics could explain the maintenance of genetic diversity during recolonization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Determining the relative roles of vicariance and selection in restricting gene flow between populations is of central importance to the evolutionary process of population divergence and speciation. Here we use molecular and morphological data to contrast the effect of isolation (by mountains and geographical distance) with that of ecological factors (altitudinal gradients) in promoting differentiation in the wedge-billed woodcreeper, Glyphorynchus spirurus, a tropical forest bird, in Ecuador. Tarsus length and beak size increased relative to body size with altitude on both sides of the Andes, and were correlated with the amount of moss on tree trunks, suggesting the role of selection in driving adaptive divergence. In contrast, molecular data revealed a considerable degree of admixture along these altitudinal gradients, suggesting that adaptive divergence in morphological traits has occurred in the presence of gene flow. As suggested by mitochondrial DNA sequence data, the Andes act as a barrier to gene flow between ancient subspecific lineages. Genome-wide amplified fragment length polymorphism markers reflected more recent patterns of gene flow and revealed fine-scale patterns of population differentiation that were not detectable with mitochondrial DNA, including the differentiation of isolated coastal populations west of the Andes. Our results support the predominant role of geographical isolation in driving genetic differentiation in G. spirurus, yet suggest the role of selection in driving parallel morphological divergence along ecological gradients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Two long synthetic peptides representing the dimorphic and constant C-terminal domains of the two allelic families of Plasmodium falciparum merozoite surface proteins 2 are considered promising malaria vaccine candidates. The aim of the current study is to characterize the immune response (epitope mapping) in naturally exposed individuals and relate immune responses to the risk of clinical malaria. METHODS: To optimize their construction, the fine specificity of human serum antibodies from donors of different age, sex and living in four distinct endemic regions was determined in ELISA by using overlapping 20 mer peptides covering the two domains. Immune purified antibodies were used in Western blot and immunofluorescence assay to recognize native parasite derivate proteins. RESULTS: Immunodominant epitopes were characterized, and their distribution was similar irrespective of geographic origin, age group and gender. Acquisition of a 3D7 family and constant region-specific immune response and antibody avidity maturation occur early in life while a longer period is needed for the corresponding FC27 family response. In addition, the antibody response to individual epitopes within the 3D7 family-specific region contributes to protection from malaria infection with different statistical weight. It is also illustrated that affinity-purified antibodies against the dimorphic or constant regions recognized homologous and heterologous parasites in immunofluorescence and homologous and heterologous MSP2 and other polypeptides in Western blot. CONCLUSION: Data from this current study may contribute to a development of MSP2 vaccine candidates based on conserved and dimorphic regions thus bypassing the complexity of vaccine development related to the polymorphism of full-length MSP2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Islet-brain 1 (IB1), a regulator of the pancreatic beta-cell function in the rat, is homologous to JIP-1, a murine inhibitor of c-Jun amino-terminal kinase (JNK). Whether IB1 and JIP-1 are present in humans was not known. We report the sequence of the 2133-bp human IB1 cDNA, the expression, structure, and fine-mapping of the human IB1 gene, and the characterization of an IB1 pseudogene. Human IB1 is 94% identical to rat IB1. The tissue-specific expression of IB1 in human is similar to that observed in rodent. The IB1 gene contains 12 exons and maps to chromosome 11 (11p11.2-p12), a region that is deleted in DEFECT-11 syndrome. Apart from an IB1 pseudogene on chromosome 17 (17q21), no additional IB1-related gene was found in the human genome. Our data indicate that the sequence and expression pattern of IB1 are highly conserved between rodent and human and provide the necessary tools to investigate whether IB1 is involved in human diseases.