5 resultados para Factor effect
em Université de Lausanne, Switzerland
Resumo:
Brain-derived neurotrophic factor (BDNF) promotes synaptic plasticity via an enhancement in expression of specific synaptic proteins. Recent results suggest that the neuronal monocarboxylate transporter MCT2 is a postsynaptic protein critically involved in synaptic plasticity and long-term memory. To investigate in vivo whether BDNF can modulate the expression of MCT2 as well as other proteins involved in synaptic plasticity, acute injection of BDNF was performed in mouse dorsal hippocampal CA1 area. Using immunohistochemistry, it was found that MCT2 expression was enhanced in part of the CA1 area and in the dentate gyrus 6 h after a single intrahippocampal injection of BDNF. Similarly, expression of the immediate early genes Arc and Zif268 was enhanced in the same hippocampal areas, in accordance with their role in synaptic plasticity. Immunoblot analysis confirmed the significant enhancement in MCT2 protein expression. In contrast, no changes were observed for the glial monocarboxylate transporters MCT1 and MCT4. When other synaptic proteins were investigated, it was found that postsynaptic density 95 (PSD95) and glutamate receptor 2 (GluR2) protein levels were significantly enhanced while no effect could be detected for synaptophysin, synaptosomal-associated protein 25 (SNAP25), αCaMKII and GluR1. These results demonstrate that MCT2 expression can be upregulated together with other key postsynaptic proteins in vivo under conditions related to synaptic plasticity, further suggesting the importance of energetics for memory formation.
Resumo:
Several studies have reported high levels of inflammatory biomarkers in hypertension, but data coming from the general population are sparse, and sex differences have been little explored. The CoLaus Study is a cross-sectional examination survey in a random sample of 6067 Caucasians aged 35-75 years in Lausanne, Switzerland. Blood pressure (BP) was assessed using a validated oscillometric device. Anthropometric parameters were also measured, including body composition, using electrical bioimpedance. Crude serum levels of interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) and ultrasensitive C-reactive protein (hsCRP) were positively and IL-1β (IL-1β) negatively (P<0.001 for all values), associated with BP. For IL-6, IL-1β and TNF-α, the association disappeared in multivariable analysis, largely explained by differences in age and body mass index, in particular fat mass. On the contrary, hsCRP remained independently and positively associated with systolic (β (95% confidence interval): 1.15 (0.64; 1.65); P<0.001) and diastolic (0.75 (0.42; 1.08); P<0.001) BP. Relationships of hsCRP, IL-6 and TNF-α with BP tended to be stronger in women than in men, partly related to the difference in fat mass, yet the interaction between sex and IL-6 persisted after correction for all tested confounders. In the general population, the associations between inflammatory biomarkers and rising levels of BP are mainly driven by age and fat mass. The stronger associations in women suggest that sex differences might exist in the complex interplay between BP and inflammation.
Resumo:
The monocarboxylate transporter MCT4 is a high capacity carrier important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is predominantly expressed by astrocytes. Surprisingly, MCT4 expression in cultured astrocytes is low, suggesting that a physiological characteristic, not met in culture conditions, is necessary. Here we demonstrate that reducing oxygen concentration from 21% to either 1 or 0% restored in a concentration-dependent manner the expression of MCT4 at the mRNA and protein levels in cultured astrocytes. This effect was specific for MCT4 since the expression of MCT1, the other astrocytic monocarboxylate transporter present in vitro, was not altered in such conditions. MCT4 expression was shown to be controlled by the transcription factor hypoxia-inducible factor-1α (HIF-1α) since under low oxygen levels, transfecting astrocyte cultures with a siRNA targeting HIF-1α largely prevented MCT4 induction. Moreover, the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) induced MCT4 expression in astrocytes cultured in presence of 21% oxygen. In parallel, glycolytic activity was enhanced by exposure to 1% oxygen as demonstrated by the increased lactate release, an effect dependent on MCT4 expression. Finally, MCT4 expression was found to be necessary for astrocyte survival when exposed for a prolonged period to 1% oxygen. These data suggest that a major determinant of astrocyte MCT4 expression in vivo is likely the oxygen tension. This could be relevant in areas of high neuronal activity and oxygen consumption, favouring astrocytic lactate supply to neurons. Moreover, it could also play an important role for neuronal recovery after an ischemic episode.
Resumo:
Macrophage migration inhibitory factor (MIF) is a homotrimeric multifunctional proinflammatory cytokine that has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Current therapeutic strategies for targeting MIF focus on developing inhibitors of its tautomerase activity or modulating its biological activities using anti-MIF neutralizing antibodies. Herein we report a new class of isothiocyanate (ITC)-based irreversible inhibitors of MIF. Modification by benzyl isothiocyanate (BITC) and related analogues occurred at the N-terminal catalytic proline residue without any effect on the oligomerization state of MIF. Different alkyl and arylalkyl ITCs modified MIF with nearly the same efficiency as BITC. To elucidate the mechanism of action, we performed detailed biochemical, biophysical, and structural studies to determine the effect of BITC and its analogues on the conformational state, quaternary structure, catalytic activity, receptor binding, and biological activity of MIF. Light scattering, analytical ultracentrifugation, and NMR studies on unmodified and ITC-modified MIF demonstrated that modification of Pro1 alters the tertiary, but not the secondary or quaternary, structure of the trimer without affecting its thermodynamic stability. BITC induced drastic effects on the tertiary structure of MIF, in particular residues that cluster around Pro1 and constitute the tautomerase active site. These changes in tertiary structure and the loss of catalytic activity translated into a reduction in MIF receptor binding activity, MIF-mediated glucocorticoid overriding, and MIF-induced Akt phosphorylation. Together, these findings highlight the role of tertiary structure in modulating the biochemical and biological activities of MIF and present new opportunities for modulating MIF biological activities in vivo.
Resumo:
Recent literature evidences differential associations of personal and general just-world beliefs with constructs in the interpersonal domain. In line with this research, we examine the respective relationships of each just-world belief with the Five-Factor and the HEXACO models of personality in one representative sample of the working population of Switzerland and one sample of the general US population, respectively. One suppressor effect was observed in both samples: Neuroticism and emotionality was positively associated with general just-world belief, but only after controlling for personal just-world belief. In addition, agreeableness was positively and honesty-humility negatively associated with general just-world belief but unrelated to personal just-world belief. Conscientiousness was consistently unrelated to any of the just-world belief and extraversion and openness to experience revealed unstable coefficients across studies. We discuss these points in light of just-world theory and their implications for future research taking both dimensions into account.