6 resultados para Factor VIII deficiency
em Université de Lausanne, Switzerland
Resumo:
PURPOSE: Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or "wet" Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. METHODS: The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with "wet" AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8(+/-) mice expressing ß-galactosidase. Aged Mfge8(+/-) and Mfge8(-/-) mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV. RESULTS: rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8(-/-) mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch's membrane (BM) was slightly but significantly thicker in Mfge8(-/-) mice as compared to controls. CONCLUSIONS: Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8(-/-) mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD.
Resumo:
Myocardial angiogenesis induction with vascular growth factors constitutes a potential strategy for patients whose coronary artery disease is refractory to conventional treatment. The importance of angiogenesis in bone formation has led to the development of growth factors derived from bovine bone protein. Twelve pigs (mean weight, 73 +/- 3 kg) were chosen for the study. In the first group (n = 6, growth factor group) five 100 micrograms boluses of growth factors derived from bovine bone protein, diluted in Povidone 5%, were injected in the lateral wall of the left ventricle. In the second group (n = 6, control group), the same operation was performed but only the diluting agent was injected. All the animals were sacrificed after 28 days and the vascular density of the left lateral wall (expressed as the number of vascular structures per mm2) as well as the area of blood vessel profiles per myocardial area analysed were determined histologically with a computerised system. The growth factor group had a capillary density which was significantly higher than that of the control group: 12.6 +/- 0.9/mm2 vs 4.8 +/- 0.5/mm2 (p < 0.01). The same holds true for the arteriolar density: 1 +/- 0.2/mm2 vs 0.3 +/- 0.1/mm2 (p < 0.01). The surface ratios of blood vessel profiles per myocardial area were 4900 +/- 800 micron 2/mm2 and 1550 +/- 400 micron 2/mm2 (p < 0.01) respectively. In this experimental model, bovine bone protein derived growth factors induce a significant neovascularisation in healthy myocardium, and appear therefore as promising candidates for therapeutic angiogenesis.
Resumo:
Transforming growth factor beta (TGF-beta) and platelet-derived growth factor A (PDGFAlpha) play a central role in tissue morphogenesis and repair, but their interplay remain poorly understood. The nuclear factor I C (NFI-C) transcription factor has been implicated in TGF-beta signaling, extracellular matrix deposition, and skin appendage pathologies, but a potential role in skin morphogenesis or healing had not been assessed. To evaluate this possibility, we performed a global gene expression analysis in NFI-C(-/-) and wild-type embryonic primary murine fibroblasts. This indicated that NFI-C acts mostly to repress gene expression in response to TGF-beta1. Misregulated genes were prominently overrepresented by regulators of connective tissue inflammation and repair. In vivo skin healing revealed a faster inflammatory stage and wound closure in NFI-C(-/-) mice. Expression of PDGFA and PDGF-receptor alpha were increased in wounds of NFI-C(-/-) mice, explaining the early recruitment of macrophages and fibroblasts. Differentiation of fibroblasts to contractile myofibroblasts was also elevated, providing a rationale for faster wound closure. Taken together with the role of TGF-beta in myofibroblast differentiation, our results imply a central role of NFI-C in the interplay of the two signaling pathways and in regulation of the progression of tissue regeneration.
Resumo:
Fibroblast growth factor (FGF) signaling is critical for a broad range of developmental processes. In 2003, Fibroblast growth factor receptor 1 (FGFR1) was discovered as a novel locus causing both forms of isolate GnRH Deficiency, Kallmann syndrome [KS with anosmia] and normosmic idiopathic hypogonadotropic hypogonadism [nIHH] eventually accounting for approximately 10% of gonadotropin-releasing hormone (GnRH) deficiency cases. Such cases are characterized by a broad spectrum of reproductive phenotypes from severe congenital forms of GnRH deficiency to reversal of HH. Additionally, the variable expressivity of both reproductive and non-reproductive phenotypes among patients and family members harboring the identical FGFR1 mutations has pointed to a more complex, oligogenic model for GnRH deficiency. Further, reversal of HH in patients carrying FGFR1 mutations suggests potential gene-environment interactions in human GnRH deficiency disorders.
Resumo:
QUESTIONS UNDER STUDY: Iron deficiency with or without anaemia is the most common deficiency in the world. Its prevalence is higher in developing countries and in low socioeconomic populations. We aimed at determining and comparing the prevalence of iron deficiency in an immigrant and non-immigrant population. METHODS: Every child scheduled for a routine check-up at 12 months of age was allowed to participate in the study. Haemoglobin, ferritin, anthropometric data, familial and nutritional status were measured. RESULTS: 586 infants were eligible and 463 were included in the study as they had assessment data at 12 months. Children were divided into two groups: immigrants' children and non-immigrants' children. The global prevalence of iron deficiency was 5.7% at 12 months. A significant difference for iron deficiency was noticed between the groups at 12 months (p = 0.01). Among risk factors, immigration (odds ratio 2.91; 95% CI 1.05-8.04) and unemployment (odds ratio 6.08; 95% CI 1.18-31.30) had the higher odds in the multivariable analysis. CONCLUSION: The prevalence of iron deficiency in the immigrant population is higher than in non-immigrants. Immigration and the category of employment are risk factors for iron deficiency, as starting baby cereals before 9 months is a protective factor. Good socioeconomic conditions in Switzerland, the quality of food for pregnant women and young infants may be the explanation. A study up to five years of age is necessary before drawing general conclusions on infancy.
Resumo:
During their life cycle, plants are typically confronted by simultaneous biotic and abiotic stresses. Low inorganic phosphate (Pi) is one of the most common nutrient deficiencies limiting plant growth in natural and agricultural ecosystems, while insect herbivory accounts for major losses in plant productivity and impacts ecological and evolutionary changes in plant populations. Here, we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defense against insect herbivory. Pi-deficient Arabidopsis (Arabidopsis thaliana) showed enhanced synthesis of JA and the bioactive conjugate JA-isoleucine, as well as activation of the JA signaling pathway, in both shoots and roots of wild-type plants and in shoots of the Pi-deficient mutant pho1 The kinetics of the induction of the JA signaling pathway by Pi deficiency was influenced by PHOSPHATE STARVATION RESPONSE1, the main transcription factor regulating the expression of Pi starvation-induced genes. Phenotypes of the pho1 mutant typically associated with Pi deficiency, such as high shoot anthocyanin levels and poor shoot growth, were significantly attenuated by blocking the JA biosynthesis or signaling pathway. Wounded pho1 leaves hyperaccumulated JA/JA-isoleucine in comparison with the wild type. The pho1 mutant also showed an increased resistance against the generalist herbivore Spodoptera littoralis that was attenuated in JA biosynthesis and signaling mutants. Pi deficiency also triggered increased resistance to S. littoralis in wild-type Arabidopsis as well as tomato (Solanum lycopersicum) and Nicotiana benthamiana, revealing that the link between Pi deficiency and enhanced herbivory resistance is conserved in a diversity of plants, including crops.