183 resultados para FIBROBLASTS
em Université de Lausanne, Switzerland
Resumo:
Summary The best described physiological function of low-density lipoproteins (LDL) is to transport cholesterol to target tissues. LDL deliver their cholesterol cargo to cells following their interaction with the LDL receptor. LDL, when their vascular concentrations increase, have also been implicated in pathologies such as atherosclerosis. Among the cell types that are found in blood vessels, endothelial and smooth muscle cells have dominated cellular research on atherosclerotic mechanisms and LDL activation of signaling pathways, while very little is known about adventitial fibroblast activation caused by elevated lipoprotein levels. Since fibroblasts participate in wound repair and since it has recently been recognized that fibroblasts may play pivotal roles in vascular remodeling and repair of injury, we assessed whether lipoproteins affect fibroblast function. We have found that LDL specifically mediate the activation of a class of mitogen-activated protein kinases (MAPKs): the p38 MAPKs. The activation of this pathway in turn modulates cell shape by promoting lamellipodia formation and extensive cell spreading. This is of particular interest because it provides a mechanism by which LDL can promote wound healing or vessel wall remodeling as observed during the development of atherosclerosis. In order to understand the molecular mechanisms by which LDL induce p38 activation we searched for the component in the LDL particle responsible for the induction of this pathway. We found that cholesterol is the major component of lipoprotein particles that mediates their ability to stimulate the p38 MAPK pathway. Furthermore, we investigated the cellular mechanisms underlying the ability of LDL to induce cell shape changes and whether this could participate in wound repair. Our recent data demonstrates that the capacity of LDL to induce fibroblast spreading relies on their ability to stimulate IL-8 secretion, which in turn leads to accelerated wound healing. LDL-induced IL-8 production and subsequent wound closure are impaired upon inhibition of the p38 MAPK pathway indicating that the LDL-induced spreading and accelerated wound sealing rely on the ability of LDL to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Therefore, regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL-cholesterol levels, IL-8 production and extensive remodeling of the vessel wall. Résumé: La fonction physiologique des lipoprotéines à faible densité (LDL) la mieux décrite est celle du transport du cholestérol aux tissus cibles. Les LDL livrent leur cargaison de cholestérol aux cellules après leur interaction avec le récepteur au LDL. Une concentration vasculaire des LDL augmenté est également impliquée dans le développement de l'athérosclérose. Parmi les types de cellule présents dans les vaisseaux sanguins, les cellules endothéliales et les cellules du muscle lisse ont dominé la recherche cellulaire sur les mécanismes athérosclérotiques et sur l'activation par les LDL des voies de signalisation intracellulaire. A l'inverse peu de choses sont connues sur l'activation des fibroblastes de l'adventice par les lipoprotéines. Puisqu'il a été récemment reconnu que les fibroblastes peuvent jouer un rôle central dans la remodélisation vasculaire et la réparation tissulaire, nous avons étudié si les lipoprotéines affectent la fonction des fibroblastes. Nous avons constaté que les LDL activent spécifiquement une classe de protéines kinases: les p38 MAPK (mitogen-activated protein kinases). L'activation de cette voie module à son tour la forme de la cellule en favorisant la formation de lamellipodes et l'agrandissement des cellules. Cela a un intérêt particulier car il fournit un mécanisme par lequel les LDL peuvent promouvoir la cicatrisation ou la remodélisation des parois vasculaires comme observés lors du développement de l'athérosclérose. Pour comprendre les mécanismes moléculaires par lesquels les LDL provoquent l'activation des p38 MAPK, nous avons cherché à identifier les composants dans la particule de LDL responsables de l'induction de cette voie. Nous avons constaté que le cholestérol est l'élément principal des particules de lipoprotéine qui contrôle leur capacité à stimuler la voie des p38 MAPK. En outre, nous avons examiné les mécanismes cellulaires responsables de la capacité des LDL à induire des changements dans la forme des cellules. Nos données récentes démontrent que la capacité des LDL à induire l'agrandissement des cellules, ainsi que leur aptitude à favoriser la cicatrisation, reposant sur leur capacité à stimuler la sécrétiond'IL-8. La production d'IL-8 induite par les LDL est bloquée par l'inhibition de la voie p38 MAPK, ce qui indique que l'étalement des cellules induit par les LDL ainsi que l'accélération de la cicatrisation sont liés à la capacité des LDL à stimuler la sécrétion d'IL8 via l'activation des p38 MAPK. La régulation de la forme et de la migration des fibroblastes par les lipoprotéines peuvent donc participer au développement de l'athérosclérose qui est caractérisée par l'augmentation des niveaux de production de LDL-cholestérol et d'IL-8 ainsi que par une remodélisation augmentée de la paroi du vaisseau.
Resumo:
We have previously reported (Dobreva, I., Waeber, G., Mooser, V., James, R. W., and Widmann, C. (2003) J. Lipid Res. 44, 2382-2390) that low density lipoproteins (LDLs) induce activation of the p38 MAPK pathway, resulting in fibroblast spreading and lamellipodia formation. Here, we show that LDL-stimulated fibroblast spreading and wound sealing are due to secretion of a soluble factor. Using an antibody-based human protein array, interleukin-8 (IL-8) was identified as the main cytokine whose concentration was increased in supernatants from LDL-stimulated cells. Incubation of supernatants from LDL-treated cells with an anti-IL-8 blocking antibody completely abolished their ability to induce cell spreading and mediate wound closure. In addition, fibroblasts treated with recombinant IL-8 spread to the same extent as cells incubated with LDL or supernatants from LDL-treated cells. The ability of LDL and IL-8 to induce fibroblast spreading was mediated by the IL-8 receptor type II (CXCR-2). Furthermore, LDL-induced IL-8 production and subsequent wound closure required the activation of the p38 MAPK pathway, because both processes were abrogated by a specific p38 inhibitor. Therefore, the capacity of LDLs to induce fibroblast spreading and accelerate wound closure relies on their ability to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL cholesterol levels, IL-8 production, and extensive remodeling of the vessel wall.
Resumo:
Prostacyclin and its mimetics are used therapeutically for the treatment of pulmonary hypertension. These drugs act via cell surface prostacyclin receptors (IP receptors); however, some of them can also activate the nuclear receptor peroxisome proliferator-activated receptor beta (PPARbeta). We examined the possibility that PPARbeta is a therapeutic target for the treatment of pulmonary hypertension. Using the newly approved (for pulmonary hypertension) prostacyclin mimetic treprostinil sodium, reporter gene assays for PPARbeta activation and measurement of lung fibroblast proliferation were analyzed. Treprostinil sodium was found to activate PPARbeta in reporter gene assays and to inhibit proliferation of human lung fibroblasts at concentrations consistent with an effect on PPARs but not on IP receptors. The effects of treprostinil sodium on human lung cell proliferation are mimicked by those of the highly selective PPARbeta ligand GW0742. There are no receptor antagonists for PPARbeta or for IP receptors, but by using lung fibroblasts cultured from mice lacking PPARbeta (PPARbeta-/-) or IP (IP-/-), we demonstrate that the antiproliferative effects of treprostinil sodium are mediated by PPARbeta and not IP in lung fibroblasts. These observations suggest that some of the local, longer-term benefits of treprostinil sodium on reducing the remodeling associated with pulmonary hypertension may be mediated by PPARbeta. This study is the first to identify PPARbeta as a potential therapeutic target for the treatment of pulmonary hypertension, which is important because orally active PPARbeta ligands have been developed for the treatment of dyslipidemia.
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8 x 106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 microl) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemming from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.
Resumo:
In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.
Resumo:
Structural definition of the receptors for neurotropic and angiogenic modulators such as fibroblast growth factors and related polypeptides will yield insight into the mechanisms that control early development, embryogenesis, organogenesis, wound repair and neovessel formation. We isolated 3 murine cDNAs encoding different binding domains of these receptors (flg). Comparison of these ectoplasmic portions showed that two of the forms corresponded to previously described murine molecules whereas the third one had a different ectoplasmic portion generated by specific changes in two regions. Interestingly, expression of this third form seems to be restricted in its tissue distribution. Such modifications could influence the ligand specificity of the different receptors and/or their binding affinity.
Resumo:
A new culture model was developed to study the role of proliferation and apoptosis in the etiology of keloids. Fibroblasts were isolated from the superficial, central, and basal regions of six different keloid lesions by using Dulbecco's Modified Eagle Medium containing 10% fetal calf serum as a culture medium. The growth behavior of each fibroblast fraction was examined in short-term and long-term cultures, and the percentage of apoptotic cells was assessed by in situ end labeling of fragmented DNA. The fibroblasts obtained from the superficial and basal regions of keloid tissue showed population doubling times and saturation densities that were similar to those of age-matched normal fibroblasts. In contrast, the fibroblasts from the center of the keloid lesions showed significantly reduced doubling times (25.9 +/- 6.3 hours versus 43.5 +/- 6.3 hours for normal fibroblasts) and reached higher cell densities. In long-term culture, central keloid fibroblasts formed a stratified three-dimensional structure, contracted the self-produced extracellular matrix, and gave rise to nodular cell aggregates, mimicking the formation of keloid tissue. Apoptotic cells were detected in both normal and keloid-derived fibroblasts, but their numbers were twofold higher in normal cells compared with all keloid fibroblasts. To examine whether apoptosis mediates the therapeutic effect of ionizing radiation on keloids, the cells were exposed to gamma rays at a dose of 8 Gy. Under these conditions, a twofold increase in the population of apoptotic cells was detected. These results indicate that the balance between proliferation and apoptosis is impaired in keloid fibroblasts, which could be responsible for the formation of keloid tumors. The results also suggest that keloids contain at least two different fibroblast fractions that vary in growth behavior and extracellular matrix metabolism.
Resumo:
To determine the type and the relative amount of prostaglandins (PGs) synthesized by various neural tissues, homogenates of meninges, dorsal root ganglia (DRG) capsules, decapsulated DRG, and unsheathed sciatic nerves were incubated with [1-14C]arachidonic acid. Homogenates of cultured cells (meningeal cells, fibroblasts, and nonneuronal or neuronal DRG cells) were used to specify the cells producing particular PGs. The highest synthetic capacity was found in fibroblast-rich tissues (meninges and DRG capsules) and in cultures of meningeal cells or fibroblasts. Two major cyclooxygenase products were formed: [14C]PGE2 and an unusual 14C-labeled compound, Y. The accumulation of compound Y, corresponding probably to 15-hydroperoxy PGE2, was completely impaired by addition of exogenous GSH, which conversely enhanced the synthesis of [14C]PGE2 and promoted the formation of [14C]PGD2. In contrast, decapsulated DRG or unsheathed sciatic nerves displayed a 10-20 times lower capacity to synthesize PGs than fibroblast-rich tissues and produced mainly [14C]PGE2 and [14C]PGD2. In this case, [14C]PGE2 or [14C]PGD2 synthesis was neither enhanced nor promoted by addition of exogenous GSH. Neuron-enriched DRG cell cultures allowed us to specify that [14C]PGD2 is the major prostanoid produced by primary sensory neurons as compared with nonneuronal DRG cells. Because PGD2 synthesis in DRG and more specifically in DRG neurons does not depend on exogenous GSH and differs from PGD2 synthesis in fibroblast-rich tissues, it is concluded that at least two distinct enzymatic processes contribute to PGD2 formation in the nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known as a "death ligand"-a member of the TNF superfamily that binds to receptors bearing death domains. As well as causing apoptosis of certain types of tumor cells, TRAIL can activate both NF-kappaB and JNK signalling pathways. To determine the role of TGF-beta-Activated Kinase-1 (TAK1) in TRAIL signalling, we analyzed the effects of adding TRAIL to mouse embryonic fibroblasts (MEFs) derived from TAK1 conditional knockout mice. TAK1-/- MEFs were significantly more sensitive to killing by TRAIL than wild-type MEFs, and failed to activate NF-kappaB or JNK. Overexpression of IKK2-EE, a constitutive activator of NF-kappaB, protected TAK1-/- MEFs against TRAIL killing, suggesting that TAK1 activation of NF-kappaB is critical for the viability of cells treated with TRAIL. Consistent with this model, TRAIL failed to induce the survival genes cIAP2 and cFlipL in the absence of TAK1, whereas activation of NF-kappaB by IKK2-EE restored the levels of both proteins. Moreover, ectopic expression of cFlipL, but not cIAP2, in TAK1-/- MEFs strongly inhibited TRAIL-induced cell death. These results indicate that cells that survive TRAIL treatment may do so by activation of a TAK1-NF-kappaB pathway that drives expression of cFlipL, and suggest that TAK1 may be a good target for overcoming TRAIL resistance.
Resumo:
Glucagon-like peptide-1 (GLP-1) is the most potent stimulator of glucose-induced insulin secretion and its pancreatic beta-cell receptor is a member of a new subfamily of G-protein-coupled receptors which includes the receptors for vasoactive intestinal polypeptide, secretin and glucagon. Here we studied agonist-induced GLP-1 receptor internalization in receptor-transfected Chinese hamster lung fibroblasts using three different approaches. First, iodinated GLP-1 bound at 4 degrees C to transfected cells was internalized with a t 1/2 of 2-3 min following warming up of the cells to 37 degrees C. Secondly, exposure to GLP-1 induced a shift in the distribution of the receptors from plasma membrane-enriched to endosomes-enriched membrane fractions, as assessed by Western blot detection of the receptors using specific antibodies. Thirdly, continuous exposure of GLP-1 receptor-expressing cells to iodinated GLP-1 led to a linear accumulation of peptide degradation products in the medium following a lag time of 20-30 min, indicating a continuous cycling of the receptor between the plasma membrane and endosomal compartments. Potassium depletion and hypertonicity inhibited transferrin endocytosis, a process known to occur via coated pit formation, as well as GLP-1 receptor endocytosis. In contrast to GLP-1, the antagonist exendin-(9-39) did not lead to receptor endocytosis. Surface re-expression following one round of GLP-1 receptor endocytosis occurred with a half-time of about 15 min. The difference in internalization and surface re-expression rates led to a progressive redistribution of the receptor in intracellular compartments upon continuous exposure to GLP-1. Finally, endogenous GLP-1 receptors expressed by insulinoma cells were also found to be internalized upon agonist binding. Together our data demonstrate that the GLP-1 receptor is internalized upon agonist binding by a route similar to that taken by single transmembrane segment receptors. The characterization of the pathway and kinetics of GLP-1-induced receptor endocytosis will be helpful towards understanding the role of internalization and recycling in the control of signal transduction by this receptor.
Resumo:
Summary Cell therapy has emerged as a strategy for the treatment of various human diseases. Cells can be transplanted considering their morphological and functional properties to restore a tissue damage, as represented by blood transfusion, bone marrow or pancreatic islet cells transplantation. With the advent of the gene therapy, cells also were used as biological supports for the production of therapeutic molecules that can act either locally or at distance. This strategy represents the basis of ex vivo gene therapy characterized by the removal of cells from an organism, their genetic modification and their implantation into the same or another individual in a physiologically suitable location. The tissue or biological function damage dictates the type of cells chosen for implantation and the required function of the implanted cells. The general aim of this work was to develop an ex vivo gene therapy approach for the secretion of erythropoietin (Epo) in patients suffering from Epo-responsive anemia, thus extending to humans, studies previously performed with mouse cells transplanted in mice and rats. Considering the potential clinical application, allogeneic primary human cells were chosen for practical and safety reasons. In contrast to autologous cells, the use of allogeneic cells allows to characterize a cell lineage that can be further transplanted in many individuals. Furthermore allogeneic cells avoid the potential risk of zoonosis encountered with xenogeneic cells. Accordingly, the immune reaction against this allogeneic source was prevented by cell macro- encapsulation that prevents cell-to-cell contact with the host immune system and allows to easy retrieve the implanted device. The first step consisted in testing the survival of various human primary cells that were encapsulated and implanted for one month in the subcutaneous tissue of immunocompetent and naturally or therapeutically immunodepressed mice, assuming that xenogeneic applications constitute a stringent and representative screening before human transplantation. A fibroblast lineage from the foreskin of a young donor, DARC 3.1 cells, showed the highest mean survival score. We have then performed studies to optimize the manufacturing procedures of the encapsulation device for successful engraftment. The development of calcifications on the polyvinyl alcohol (PVA) matrix serving as a scaffold for enclosed cells into the hollow fiber devices was reported after one month in vivo. Various parameters, including matrix rinsing solutions, batches of PVA and cell lineages were assessed for their respective role in the development of the phenomenon. We observed that the calcifications could be totally prevented by using ultra-pure sterile water instead of phosphate buffer saline solution in the rinsing procedure of the PVA matrix. Moreover, a higher lactate dehydrogenase activity of the cells was found to decrease calcium depositions due to more acidic microenvironment, inhibiting the calcium precipitation. After the selection of the appropriate cell lineage and the optimization of encapsulation conditions, a retroviral-based approach was applied to DARC 3.1 fibroblasts for the transduction of the human Epo cDNA. Various modifications of the retroviral vector and the infection conditions were performed to obtain clinically relevant levels of human Epo. The insertion of a post-transcriptional regulatory element from the woodchuck hepatitis virus as well as of a Kozak consensus sequence led to a 7.5-fold increase in transgene expression. Human Epo production was further optimized by increasing the multiplicity of infection and by selecting high producer cells allowing to reach 200 IU hEpo/10E6 cells /day. These modified cells were encapsulated and implanted in vivo in the same conditions as previously described. All the mouse strains showed a sustained increase in their hematocrit and a high proportion of viable cells were observed after retrieval of the capsules. Finally, in the perspective of human application, a syngeneic model using encapsulated murine myoblasts transplanted in mice was realized to investigate the roles of both the host immune response and the cells metabolic requirements. Various loading densities and anti-inflammatory as well as immunosuppressive drugs were studied. The results showed that an immune process is responsible of cell death in capsules loaded at high cell density. A supporting matrix of PVA was shown to limit the cell density and to avoid early metabolic cell death, preventing therefore the immune reaction. This study has led to the development of encapsulated cells of human origin producing clinically relevant amounts of human EPO. This work resulted also to the optimization of cell encapsulation technical parameters allowing to begin a clinical application in end-stage renal failure patients. Résumé La thérapie cellulaire s'est imposée comme une stratégie de traitement potentiel pour diverses maladies. Si l'on considère leur morphologie et leur fonction, les cellules peuvent être transplantées dans le but de remplacer une perte tissulaire comme c'est le cas pour les transfusions sanguines ou les greffes de moelle osseuse ou de cellules pancréatiques. Avec le développement de la thérapie génique, les cellules sont également devenues des supports biologiques pour la production de molécules thérapeutiques. Cette stratégie représente le fondement de la thérapie génique ex vivo, caractérisée par le prélèvement de cellules d'un organisme, leur modification génétique et leur implantation dans le même individu ou dans un autre organisme. Le choix du type de cellule et la fonction qu'elle doit remplir pour un traitement spécifique dépend du tissu ou de la fonction biologique atteintes. Le but général de ce travail est de développer .une approche par thérapie génique ex vivo de sécrétion d'érythropoïétine (Epo) chez des patients souffrant d'anémie, prolongeant ainsi des travaux réalisés avec des cellules murines implantées chez des souris et des rats. Dans cette perpective, notre choix s'est porté sur des cellules humaines primaires allogéniques. En effet, contrairement aux cellules autologues, une caractérisation unique de cellules allogéniques peut déboucher sur de nombreuses applications. Par ailleurs, l'emploi de cellules allogéniques permet d'éviter les riques de zoonose que l'on peut rencontrer avec des cellules xénogéniques. Afin de protéger les cellules allogéniques soumises à une réaction immunitaire, leur confinement dans des macro-capsules cylindriques avant leur implantation permet d'éviter leur contact avec les cellules immunitaires de l'hôte, et de les retrouver sans difficulté en cas d'intolérance ou d'effet secondaire. Dans un premier temps, nous avons évalué la survie de différentes lignées cellulaires humaines primaires, une fois encapsulées et implantées dans le tissu sous-cutané de souris, soit immunocompétentes, soit immunodéprimées naturellement ou par l'intermédiaire d'un immunosuppresseur. Ce modèle in vivo correspond à des conditions xénogéniques et représente par conséquent un environnement de loin plus hostile pour les cellules qu'une transplantation allogénique. Une lignée fibroblastique issue du prépuce d'un jeune enfant, nommée DARC 3 .1, a montré une remarquable résistance avec un score de survie moyen le plus élevé parmi les lignées testées. Par la suite, nous nous sommes intéressés aux paramètres intervenant dans la réalisation du système d'implantation afin d'optimaliser les conditions pour une meilleure adaptation des cellules à ce nouvel environnement. En effet, en raison de l'apparition, après un mois in vivo, de calcifications au niveau de la matrice de polyvinyl alcohol (PVA) servant de support aux cellules encapsulées, différents paramètres ont été étudiés, tels que les procédures de fabrication, les lots de PVA ou encore les lignées cellulaires encapsulées, afin de mettre en évidence leur rôle respectif dans la survenue de ce processus. Nous avons montré que l'apparition des calcifications peut être totalement prévenue par l'utilisation d'eau pure au lieu de tampon phosphaté lors du rinçage des matrices de PVA. De plus, nous avons observe qu'un taux de lactate déshydrogénase cellulaire élevé était corrélé avec une diminution des dépôts de calcium au sein de la matrice en raison d'un micro-environnement plus acide inhibant la précipitation du calcium. Après sélection de la lignée cellulaire appropriée et de l'optimisation des conditions d'encapsulation, une modification génétique des fibroblastes DARC 3.1 a été réalisée par une approche rétrovirale, permettant l'insertion de l'ADN du gène de l'Epo dans le génome cellulaire. Diverses modifications, tant au niveau génétique qu'au niveau des conditions d'infection, ont été entreprises afin d'obtenir des taux de sécrétion d'Epo cliniquement appropriés. L'insertion dans la séquence d'ADN d'un élément de régulation post¬transcriptionnelle dérivé du virus de l'hépatite du rongeur (« woodchuck ») ainsi que d'une séquence consensus appelée « Kozak » ont abouti à une augmentation de sécrétion d'Epo 7.5 fois plus importante. De même, l'optimisation de la multiplicité d'infection et la sélection plus drastique des cellules hautement productrices ont permis finalement d'obtenir une sécrétion correspondant à 200 IU d'Epo/10E6 cells/jour. Ces cellules génétiquement modifiées ont été encapsulées et implantées in vivo dans les mêmes conditions que celles décrites plus haut. Toutes les souris transplantées ont montré une augmentation significative de leur hématocrite et une proportion importante de cellules présentait une survie conservée au moment de l'explantation des capsules. Finalement, dans la perspective d'une application humaine, un modèle syngénique a été proposé, basé sur l'implantation de myoblastes murins encapsulés dans des souris, afin d'investiguer les rôles respectifs de la réponse immunitaire du receveur et des besoins métaboliques cellulaires sur leur survie à long terme. Les cellules ont été encapsulées à différentes densités et les animaux transplantés se sont vus administrer des injections de molécules anti-inflammatoires ou immunosuppressives. Les résultats ont démontré qu'une réaction immunologique péri-capsulaire était à la base du rejet cellulaire dans le cas de capsules à haute densité cellulaire. Une matrice de PVA peut limiter cette densité et éviter une mort cellulaire précoce due à une insuffisance métabolique et par conséquent prévenir la réaction immunitaire. Ce travail a permis le développement de cellules encapsulées d'origine humaine sécrétant des taux d'Epo humaine adaptés à des traitements cliniques. De pair avec l'optimalisation des paramètres d'encapsulation, ces résultats ont abouti à l'initiation d'une application clinique destinée à des patients en insuffisance rénale terminale.
Resumo:
By expressing an array of pattern recognition receptors (PRRs), fibroblasts play an important role in stimulating and modulating the response of the innate immune system. The TLR3 ligand polyriboinosinic acid-polyribocytidylic acid, poly(I:C), a mimic of viral dsRNA, is a vaccine adjuvant candidate to activate professional antigen presenting cells (APCs). However, owing to its ligation with extracellular TLR3 on fibroblasts, subcutaneously administered poly(I:C) bears danger towards autoimmunity. It is thus in the interest of its clinical safety to deliver poly(I:C) in such a way that its activation of professional APCs is as efficacious as possible, whereas its interference with non-immune cells such as fibroblasts is controlled or even avoided. Complementary to our previous work with monocyte-derived dendritic cells (MoDCs), here we sought to control the delivery of poly(I:C) surface-assembled on microspheres to human foreskin fibroblasts (HFFs). Negatively charged polystyrene (PS) microspheres were equipped with a poly(ethylene glycol) (PEG) corona through electrostatically driven coatings with a series of polycationic poly(L-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG, of varying grafting ratios g from 2.2 up to 22.7. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres with aqueous poly(I:C) solutions. Notably, recognition of both surface-assembled and free poly(I:C) by extracellular TLR3 on HFFs halted their phagocytic activity. Ligation of surface-assembled poly(I:C) with extracellular TLR3 on HFFs could be controlled by tuning the grafting ratio g and thus the chain density of the PEG corona. When assembled on PLL-5.7-PEG-coated microspheres, poly(I:C) was blocked from triggering class I MHC molecule expression on HFFs. Secretion of interleukin (IL)-6 by HFFs after exposure to surface-assembled poly(I:C) was distinctly lower as compared to free poly(I:C). Overall, surface assembly of poly(I:C) may have potential to contribute to the clinical safety of this vaccine adjuvant candidate.
Resumo:
SummarySecondary lymphoid organs, such as lymph nodes or spleen, are the only places in our body where primary adaptive immune responses are efficiently elicited. These organs have distinct Β and Τ cell rich zones and Τ lymphocytes constantly migrate from the bloodstream into Τ zones to scan dendritic cells (DCs) for antigens they present. Specialized fibroblasts, the Τ zone reticular cells (HR.Cs), span the Τ zone in the form a three-dimensional network. lK.Cs guide incoming Τ cells in their migration, both chemically, by the secretion of the chemokines CCL19 and CCL21, and physically, by construction of a road system to which also DCs adhere. In this way TRCs are thought to facilitate encounters of Τ cells with antigen-bearing DCs and thereby accelerate the selection of rare antigen-specific Τ cells. The resulting Τ cell activation, proliferation and differentiation all take place within the TRC network. However, the influence of TRCs on Τ cell activation has so fer not been elucidated with the possible reasons being that TRCs represent a relative rare cell population and that mice devoid of TRCs have not been described.To circumvent these technical limitations, we established TRC clones and lines to have an abundant source to functionally characterize TRCs. Both the clones and lines show a fibroblastic phenotype, express a surface marker profile comparable to ex vivo TRCs and produce extracellular matrix molecules. However, expression of Ccl19, Ccl21 and ZL-7 is lost and could not be restored by cytokine stimulation. When these TRC clones or lines were cultured in a three-dimensional cell culture system, their morphology changed and resembled that of in vivo TRCs as they formed networks. By adding Τ cells and antigen-loaded DCs to these cultures we successfully reconstructed lymphoid Τ zones that allowed antigen-specific Τ cell activation.To characterize the role of TRCs in Τ cell priming, TRCs were co-cultured with antigen-specific Τ cells in the presence antigen-loaded DCs. Surprisingly, the presence of TRC lines and ex vivo TRCs inhibited rather than enhanced CD8+ Τ cell activation, proliferation and effector cell differentiation. TRCs shared this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. TRCs were identified as a strong source of nitric oxide (NO) thereby directly dampening Τ cell expansion as well as reducing the Τ cell priming capacity of DCs. The expression of inducible NO synthase (iNOS) was up- regulated in a subset of TRCs by both DC-signals as well as interferon-γ produced by primed CD8+ Τ cells. Importantly, iNOS expression was induced during viral infection in vivo in both lymph node TRCs and DCs. Consistent with a role for NO as a negative regulator, the primary Τ cell response was exaggerated in iNOS-/- mice. Our findings highlight that in addition to their established positive roles in Τ cell responses TRCs and DCs cooperate in a negative feedback loop to attenuate Τ cell expansion during acute inflammation.RésuméLes organes lymphoïdes secondaires, comme les ganglions lymphoïdes ou la rate, sont les seuls sites dans notre corps où la réponse primaire des lymphocytes Β et Τ est initiée efficacement. Ces organes ont des zones différentes, riches en cellules Β ou T. Des lymphocytes Τ circulent constamment du sang vers les zones T, où ils échantillonent la surface des cellules dendritiques (DCs) pour identifier les antigènes qu'ils présentent. Des fibroblastes spécialisés - nommés Τ zone reticular cells (TRCs)' forment un réseau tridimensionnel dans la zone T. Les TRCs guident la migration des cellules Τ par deux moyens: chimiquement, par la sécrétion des chimiokines CCL19 et CCL21 et physiquement, par la construction d'un réseau routier en trois dimensions, auquel adhèrent aussi des DCs. Dans ce? cas, on pense que la présence des TRCs facilite les rencontres entre les cellules Τ et les DCs chargées de l'antigène et accélère la sélection des rares cellules Τ spécifiques. Ensuite, l'activation de cellules T, ainsi que la prolifération et la différenciation se produisent toutes à l'intérieur du réseau des TRCs. L'influence des TRCs sur l'activation des cellules T n'est que très peu caractérisée, en partie parce que les TRCs représentent une population rare et que les souris déficientes dans les TRCs n'ont pas encore été découvertes.Pour contourner ces limitations techniques, nous avons établi des clones et des lignées cellulaires de TRC pour obtenir une source indéfinie de ces cellules permettant leur caractérisation fonctionnelle. Les clones et lignées établis ont un phénotype de fibroblaste, ils expriment des molécules de surface similaires aux TRCs ex vivo et produisent de la matrice extracellulaire. Mais l'expression de Ccl19, Ccl21 et 11-7 est perdue et ne peut pas être rétablie par stimulation avec différentes cytokines. Les clones TRC ou les lignées cultivées en un système tridimensionnel de culture cellulaire, montrent une morphologie changée, qui ressemble à celle de TRC ex vivo inclus la construction de réseaux tridimensionnels.Pour caractériser le rôle des TRC dans l'activation des cellules T, nous avons cultivé des TRCs avec des cellules T spécifiques et des DCs chargées avec l'antigène. Etonnamment, la présence des TRC (lignées et ex vivo) inhibait plutôt qu'elle améliorait l'activation, la prolifération et la différenciation des lymphocytes T CDS+. Les TRCs partageaient cette fonction avec des fibr-oblastes des organes non lymphoïdes et des cellules souches du type mésenchymateux. Dans ces conditions, les TRCs sont une source importante d'oxyde nitrique (NO) et par ce fait limitent directement l'expansion des cellules T et réduisent aussi la capacité des DCs à activer les cellules T. L'expression de l'enzyme NO synthase inductible (ïNOS) est régulée à la hausse par des signaux dérivés des DCs et par l'interféron-γ produit par des cellules T de type CD8+ activées. Plus important, l'expression d'iNOS est induite pendant une infection virale in vivo, dans les TRCs et dans les DCs. Par conséquent, la réponse primaire de cellules T est exagérée dans des souris iNOS-/-. Nos résultats mettent en évidence qu'en plus de leur rôle positif bien établi dans la réponse immunitaire, les TRCs et les DCs coopèrent dans une boucle de rétroaction négative pour atténuer l'expansion des cellules T pendant l'inflammation aigiie pour protéger l'intégrité et la fonctionnalité des organes lymphoïdes secondaires.
Resumo:
BACKGROUND: 5,10,15,20-Tetrakis(m-hydroxyphenyl)chlorin (mTHPC)-mediated photodynamic therapy (PDT) has shown insufficient tumor selectivity for the treatment of pleural mesothelioma. Tumor selectivity of mTHPC-PDT may be enhanced in the presence of the TAT-RasGAP(317-326) peptide which has the potential to specifically sensitize tumor cells to cytostatic agents. MATERIALS AND METHODS: H-meso-1 and human fibroblast cell cultures, respectively, were exposed to two different mTHPC doses followed by light delivery with and without TAT-RasGAP(317-326) administration. mTHPC was added to the cultures at a concentration of 0.04microg/ml and 0.10microg/ml, respectively, 24h before laser light illumination at 652nm (3J/cm(2), 40mW/cm(2)). TAT-RasGAP(317-326) was added to the cultures immediately after light delivery at a concentration of 20microM. The apoptosis rate was determined by scoring the cells displaying pycnotic nuclei. Cell viability was measured by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: Light delivery associated with 0.04microg/ml mTHPC resulted in a significantly higher apoptosis rate in the presence of TAT-RasGAP(317-326) than without in H-meso-1 cells (p<0.05) but not in fibroblasts. In contrast, 1.0microg/ml mTHPC and light resulted in a significantly higher apoptosis rate in both H-meso-1 cells and fibroblasts as compared to controls (p<0.05) but the addition of TAT-RasGAP(317-326) did not lead to a further significant increase of the apoptosis rate of both H-meso-1 cells and fibroblasts as compared to mTHPC and light delivery alone. CONCLUSION: TAT-RasGAP(317-326) selectively enhanced the effect of mTHPC and light delivery on H-meso-1 cells but not on fibroblasts. However, this effect was mTHPC dose-dependent and occurred only at a low sensitizer dose.
Resumo:
Photons participate in many atomic and molecular interactions and processes. Recent biophysical research has discovered an ultraweak radiation in biological tissues. It is now recognized that plants, animal and human cells emit this very weak biophotonic emission which can be readily measured with a sensitive photomultiplier system. UVA laser induced biophotonic emission of cultured cells was used in this report with the intention to detect biophysical changes between young and adult fibroblasts as well as between fibroblasts and keratinocytes. With suspension densities ranging from 1-8x106 cells/ml, it was evident that an increase of the UVA-laser-light induced photon emission intensity could be observed in young as well as adult fibroblastic cells. By the use of this method to determine ultraweak light emission, photons in cell suspensions in low volumes (100 mu l) could be detected, in contrast to previous procedures using quantities up to 10 ml. Moreover, the analysis has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 mu s instead of more than 100 milliseconds. These significant changes lead to an improvement factor up to 106 in comparison to classical detection procedures. In addition, different skin cells as fibroblasts and keratinocytes stemining from the same donor were measured using this new highly sensitive method in order to find new biophysical insight of light pathways. This is important in view to develop new strategies in biophotonics especially for use in alternative therapies.