111 resultados para FAILURE ANALYSIS
em Université de Lausanne, Switzerland
Resumo:
BACKGROUND: Recent data suggest that beta-blockers can be beneficial in subgroups of patients with chronic heart failure (CHF). For metoprolol and carvedilol, an increase in ejection fraction has been shown and favorable effects on the myocardial remodeling process have been reported in some studies. We examined the effects of bisoprolol fumarate on exercise capacity and left ventricular volume with magnetic resonance imaging (MRI) and applied a novel high-resolution MRI tagging technique to determine myocardial rotation and relaxation velocity. METHODS: Twenty-eight patients (mean age, 57 +/- 11 years; mean ejection fraction, 26 +/- 6%) were randomized to bisoprolol fumarate (n = 13) or to placebo therapy (n = 15). The dosage of the drugs was titrated to match that of the the Cardiac Insufficiency Bisoprolol Study protocol. Hemodynamic and gas exchange responses to exercise, MRI measurements of left ventricular end-systolic and end-diastolic volumes and ejection fraction, and left ventricular rotation and relaxation velocities were measured before the administration of the drug and 6 and 12 months later. RESULTS: After 1 year, heart rate was reduced in the bisoprolol fumarate group both at rest (81 +/- 12 before therapy versus 61 +/- 11 after therapy; P <.01) and peak exercise (144 +/- 20 before therapy versus 127 +/- 17 after therapy; P <.01), which indicated a reduction in sympathetic drive. No differences were observed in heart rate responses in the placebo group. No differences were observed within or between groups in peak oxygen uptake, although work rate achieved was higher (117.9 +/- 36 watts versus 146.1 +/- 33 watts; P <.05) and exercise time tended to be higher (9.1 +/- 1.7 minutes versus 11.4 +/- 2.8 minutes; P =.06) in the bisoprolol fumarate group. A trend for a reduction in left ventricular end-diastolic volume (-54 mL) and left ventricular end-systolic volume (-62 mL) in the bisoprolol fumarate group occurred after 1 year. Ejection fraction was higher in the bisoprolol fumarate group (25.0 +/- 7 versus 36.2 +/- 9%; P <.05), and the placebo group remained unchanged. Most changes in volume and ejection fraction occurred during the latter 6 months of treatment. With myocardial tagging, insignificant reductions in left ventricular rotation velocity were observed in both groups, whereas relaxation velocity was reduced only after bisoprolol fumarate therapy (by 39%; P <.05). CONCLUSION: One year of bisoprolol fumarate therapy resulted in an improvement in exercise capacity, showed trends for reductions in end-diastolic and end-systolic volumes, increased ejection fraction, and significantly reduced relaxation velocity. Although these results generally confirm the beneficial effects of beta-blockade in patients with chronic heart failure, they show differential effects on systolic and diastolic function.
Resumo:
BACKGROUND: Clinical results of total ankle arthroplasty with early designs were disappointing. Recently-developed ankle prostheses have good mid-term results; however, limited information is available regarding effects of total ankle arthroplasty on ankle laxity. METHODS: Eight cadaveric lower extremities were tested with a custom device which enabled measurement of multi-axial forces, moments, and displacement during applied axial, shear, and rotational loading. Tests consisted of anterior-posterior and medial-lateral translation and internal-external rotation of the talus relative to the tibia during axial loads on the tibia simulating body weight (700 N) and an unloaded condition (5 N). Tests were performed in neutral, dorsiflexion, and plantarflexion. Laxity was determined for the intact ankle, and following insertion of an unconstrained total ankle implant, comparing load-displacement curve. FINDINGS: Laxity after total ankle arthroplasty did not approximate the normal ankle in most conditions tested. Displacement was significantly greater for total ankle arthroplasty in both posterior and lateral translation, and internal rotation, with 5 N axial loading, and anterior-posterior, medial-lateral translation, and internal-external rotation for 700 N axial loading. For the 700 N axial load condition, in the neutral ankle position, total anterior-posterior translation averaged 0.4 mm (SD 0.2 mm), but 6.0 mm (SD 1.5 mm) after total ankle arthroplasty (P<0.01). This study demonstrated more laxity in the replaced ankle than normal ankle for both unloaded and 700 N axially loaded conditions. INTERPRETATION: These data indicate the increased responsibility of the ligaments for ankle laxity after total ankle arthroplasty and suggest the importance of meticulous ligament reconstruction with total ankle arthroplasty operations.
Resumo:
BACKGROUND: Articular surfaces reconstruction is essential in total shoulder arthroplasty. Because of the limited glenoid bone support, thin glenoid component could improve anatomical reconstruction, but adverse mechanical effects might appear. METHODS: With a numerical musculoskeletal shoulder model, we analysed and compared three values of thickness of a typical all-polyethylene glenoid component: 2, 4 (reference) and 6mm. A loaded movement of abduction in the scapular plane was simulated. We evaluated the humeral head translation, the muscle moment arms, the joint force, the articular contact pattern, and the polyethylene and cement stress. Findings Decreasing polyethylene thickness from 6 to 2mm slightly increased humeral head translation and muscle moment arms. This induced a small decreased of the joint reaction force, but important increase of stress within the polyethylene and the cement mantel. Interpretation The reference thickness of 4mm seems a good compromise to avoid stress concentration and joint stuffing.
Resumo:
BACKGROUND: Different kinds of ventilators are available to perform noninvasive ventilation (NIV) in ICUs. Which type allows the best patient-ventilator synchrony is unknown. The objective was to compare patient-ventilator synchrony during NIV between ICU, transport-both with and without the NIV algorithm engaged-and dedicated NIV ventilators. METHODS: First, a bench model simulating spontaneous breathing efforts was used to assess the respective impact of inspiratory and expiratory leaks on cycling and triggering functions in 19 ventilators. Second, a clinical study evaluated the incidence of patient-ventilator asynchronies in 15 patients during three randomized, consecutive, 20-min periods of NIV using an ICU ventilator with and without its NIV algorithm engaged and a dedicated NIV ventilator. Patient-ventilator asynchrony was assessed using flow, airway pressure, and respiratory muscles surface electromyogram recordings. RESULTS: On the bench, frequent auto-triggering and delayed cycling occurred in the presence of leaks using ICU and transport ventilators. NIV algorithms unevenly minimized these asynchronies, whereas no asynchrony was observed with the dedicated NIV ventilators in all except one. These results were reproduced during the clinical study: The asynchrony index was significantly lower with a dedicated NIV ventilator than with ICU ventilators without or with their NIV algorithm engaged (0.5% [0.4%-1.2%] vs 3.7% [1.4%-10.3%] and 2.0% [1.5%-6.6%], P < .01), especially because of less auto-triggering. CONCLUSIONS: Dedicated NIV ventilators allow better patient-ventilator synchrony than ICU and transport ventilators, even with their NIV algorithm. However, the NIV algorithm improves, at least slightly and with a wide variation among ventilators, triggering and/or cycling off synchronization.
Resumo:
An objective analysis of image quality parameters was performed for a computed radiography (CR) system using both standard single-side and prototype dual-side read plates. The pre-sampled modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) for the systems were determined at three different beam qualities representative of pediatric chest radiography, at an entrance detector air kerma of 5 microGy. The NPS and DQE measurements were realized under clinically relevant x-ray spectra for pediatric radiology, including x-ray scatter radiations. Compared to the standard single-side read system, the MTF for the dual-side read system is reduced, but this is offset by a significant decrease in image noise, resulting in a marked increase in DQE (+40%) in the low spatial frequency range. Thus, for the same image quality, the new technology permits the CR system to be used at a reduced dose level.
Resumo:
The aim of this study was to propose a methodology allowing a detailed characterization of body sit-to-stand/stand-to-sit postural transition. Parameters characterizing the kinematics of the trunk movement during sit-to-stand (Si-St) postural transition were calculated using one initial sensor system fixed on the trunk and a data logger. Dynamic complexity of these postural transitions was estimated by fractal dimension of acceleration-angular velocity plot. We concluded that this method provides a simple and accurate tool for monitoring frail elderly and to objectively evaluate the efficacy of a rehabilitation program.
Resumo:
The recently released Affymetrix Human Gene 1.0 ST array has two major differences compared with standard 3' based arrays: (i) it interrogates the entire mRNA transcript, and (ii) it uses DNA targets. To assess the impact of these differences on array performance, we performed a series of comparative hybridizations between the Human Gene 1.0 ST and the Affymetrix HG-U133 Plus 2.0 and the Illumina HumanRef-8 BeadChip arrays. Additionally, both RNA and DNA targets were hybridized on HG-U133 Plus 2.0 arrays. The results show that the overall reproducibility of the Gene 1.0 ST array is best. When looking only at the high intensity probes, the reproducibility of the Gene 1.0 ST array and the Illumina BeadChip array is equally good. Concordance of array results was assessed using different inter-platform mappings. Agreements are best between the two labeling protocols using HG-U133 Plus 2.0 array. The Gene 1.0 ST array is most concordant with the HG-U133 array hybridized with cDNA targets. This may reflect the impact of the target type. Overall, the high degree of correspondence provides strong evidence for the reliability of the Gene 1.0 ST array.
Resumo:
Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the shoulder. The reversed shoulder prostheses have not been assessed as yet. We investigated the volumetric polyethylene wear of the reversed and anatomical Aequalis shoulder prostheses using a mathematical musculoskeletal model. Movement and joint stability were achieved by EMG-controlled activation of the muscles. A non-constant wear factor was considered. Simulated activities of daily living were estimated from in vivo recorded data. After one year of use, the volumetric wear was 8.4 mm(3) for the anatomical prosthesis, but 44.6 mm(3) for the reversed version. For the anatomical prosthesis the predictions for contact pressure and wear were consistent with biomechanical and clinical data. The abrasive wear of the polyethylene in reversed prostheses should not be underestimated, and further analysis, both experimental and clinical, is required.
Resumo:
To evaluate the severity of airway pathologies, quantitative dimensioning of airways is of utmost importance. Endoscopic vision gives a projective image and thus no true scaling information can be directly deduced from it. In this article, an approach based on an interferometric setup, a low-coherence laser source and a standard rigid endoscope is presented, and applied to hollow samples measurements. More generally, the use of the low-coherence interferometric setup detailed here could be extended to any other endoscopy-related field of interest, e.g., gastroscopy, arthroscopy and other medical or industrial applications where tri-dimensional topology is required. The setup design with a multiple fibers illumination system is presented. Demonstration of the method ability to operate on biological samples is assessed through measurements on ex vivo pig bronchi.
Resumo:
A new ambulatory method of monitoring physical activities in Parkinson's disease (PD) patients is proposed based on a portable data-logger with three body-fixed inertial sensors. A group of ten PD patients treated with subthalamic nucleus deep brain stimulation (STN-DBS) and ten normal control subjects followed a protocol of typical daily activities and the whole period of the measurement was recorded by video. Walking periods were recognized using two sensors on shanks and lying periods were detected using a sensor on trunk. By calculating kinematics features of the trunk movements during the transitions between sitting and standing postures and using a statistical classifier, sit-to-stand (SiSt) and stand-to-sit (StSi) transitions were detected and separated from other body movements. Finally, a fuzzy classifier used this information to detect periods of sitting and standing. The proposed method showed a high sensitivity and specificity for the detection of basic body postures allocations: sitting, standing, lying, and walking periods, both in PD patients and healthy subjects. We found significant differences in parameters related to SiSt and StSi transitions between PD patients and controls and also between PD patients with and without STN-DBS turned on. We concluded that our method provides a simple, accurate, and effective means to objectively quantify physical activities in both normal and PD patients and may prove useful to assess the level of motor functions in the latter.
Resumo:
BACKGROUND: Reversed shoulder arthroplasty is an accepted treatment for glenohumeral arthritis associated to rotator cuff deficiency. For most reversed shoulder prostheses, the baseplate of the glenoid component is uncemented and its primary stability is provided by a central peg and peripheral screws. Because of the importance of the primary stability for a good osteo-integration of the baseplate, the optimal fixation of the screws is crucial. In particular, the amplitude of the tightening force of the nonlocking screws is clearly associated to this stability. Since this force is unknown, it is currently not accounted for in experimental or numerical analyses. Thus, the primary goal of this work is to measure this tightening force experimentally. In addition, the tightening torque was also measured, to estimate an optimal surgical value. METHODS: An experimental setup with an instrumented baseplate was developed to measure simultaneously the tightening force, tightening torque and screwing angle, of the nonlocking screws of the Aquealis reversed prosthesis. In addition, the amount of bone volume around each screw was measured with a micro-CT. Measurements were performed on 6 human cadaveric scapulae. FINDINGS: A statistically correlated relationship (p<0.05, R=0.83) was obtained between the maximal tightening force and the bone volume. The relationship between the tightening torque and the bone volume was not statistically significant. INTERPRETATION: The experimental relationship presented in this paper can be used in numerical analyses to improve the baseplate fixation in the glenoid bone.
Resumo:
The use of self-calibrating techniques in parallel magnetic resonance imaging eliminates the need for coil sensitivity calibration scans and avoids potential mismatches between calibration scans and subsequent accelerated acquisitions (e.g., as a result of patient motion). Most examples of self-calibrating Cartesian parallel imaging techniques have required the use of modified k-space trajectories that are densely sampled at the center and more sparsely sampled in the periphery. However, spiral and radial trajectories offer inherent self-calibrating characteristics because of their densely sampled center. At no additional cost in acquisition time and with no modification in scanning protocols, in vivo coil sensitivity maps may be extracted from the densely sampled central region of k-space. This work demonstrates the feasibility of self-calibrated spiral and radial parallel imaging using a previously described iterative non-Cartesian sensitivity encoding algorithm.
Resumo:
Achieving a high degree of dependability in complex macro-systems is challenging. Because of the large number of components and numerous independent teams involved, an overview of the global system performance is usually lacking to support both design and operation adequately. A functional failure mode, effects and criticality analysis (FMECA) approach is proposed to address the dependability optimisation of large and complex systems. The basic inductive model FMECA has been enriched to include considerations such as operational procedures, alarm systems. environmental and human factors, as well as operation in degraded mode. Its implementation on a commercial software tool allows an active linking between the functional layers of the system and facilitates data processing and retrieval, which enables to contribute actively to the system optimisation. The proposed methodology has been applied to optimise dependability in a railway signalling system. Signalling systems are typical example of large complex systems made of multiple hierarchical layers. The proposed approach appears appropriate to assess the global risk- and availability-level of the system as well as to identify its vulnerabilities. This enriched-FMECA approach enables to overcome some of the limitations and pitfalls previously reported with classical FMECA approaches.
Resumo:
BACKGROUND AND PURPOSE: Endovascular treatment of wide-neck bifurcation aneurysms often results in incomplete occlusion or aneurysm recurrence. The goals of this study were to compare results of coil embolization with or without the assistance of self-expandable stents and to examine how stents may influence neointima formation. MATERIALS AND METHODS: Wide-neck bifurcation aneurysms were constructed in 24 animals and, after 4-6 weeks, were randomly allocated to 1 of 5 groups: 1) coil embolization using the assistance of 1 braided stent (n = 5); 2) coil embolization using the assistance of 2 braided stents in a Y configuration (n = 5); 3) coil embolization without stent assistance (n = 6); 4) Y-stenting alone (n = 4); and 5) untreated controls (n = 4). Angiographic results were compared at baseline and at 12 weeks, by using an ordinal scale. Neointima formation at the neck at 12 weeks was compared among groups by using a semiquantitative grading scale. Bench studies were performed to assess stent porosities. RESULTS: Initial angiographic results were improved with single stent-assisted coiling compared with simple coiling (P = .013). Angiographic results at 12 weeks were improved with any stent assistance (P = .014). Neointimal closure of the aneurysm neck was similar with or without stent assistance (P = .908), with neointima covering coil loops but rarely stent struts. Y-stent placement alone had no therapeutic effect. Bench studies showed that porosities can be decreased with stent compaction, but a relatively stable porous transition zone was a limiting factor. CONCLUSIONS: Stent-assisted coiling may improve results of embolization by allowing more complete initial coiling, but these high-porosity stents did not provide a scaffold for more complete neointimal closure of aneurysms.