11 resultados para FACTOR-I DEFICIENCY
em Université de Lausanne, Switzerland
Resumo:
Transforming growth factor beta (TGF-beta) and platelet-derived growth factor A (PDGFAlpha) play a central role in tissue morphogenesis and repair, but their interplay remain poorly understood. The nuclear factor I C (NFI-C) transcription factor has been implicated in TGF-beta signaling, extracellular matrix deposition, and skin appendage pathologies, but a potential role in skin morphogenesis or healing had not been assessed. To evaluate this possibility, we performed a global gene expression analysis in NFI-C(-/-) and wild-type embryonic primary murine fibroblasts. This indicated that NFI-C acts mostly to repress gene expression in response to TGF-beta1. Misregulated genes were prominently overrepresented by regulators of connective tissue inflammation and repair. In vivo skin healing revealed a faster inflammatory stage and wound closure in NFI-C(-/-) mice. Expression of PDGFA and PDGF-receptor alpha were increased in wounds of NFI-C(-/-) mice, explaining the early recruitment of macrophages and fibroblasts. Differentiation of fibroblasts to contractile myofibroblasts was also elevated, providing a rationale for faster wound closure. Taken together with the role of TGF-beta in myofibroblast differentiation, our results imply a central role of NFI-C in the interplay of the two signaling pathways and in regulation of the progression of tissue regeneration.
Resumo:
Activation of dendritic cells (DC) by microbial products via Toll-like receptors (TLR) is instrumental in the induction of immunity. In particular, TLR signaling plays a major role in the instruction of Th1 responses. The development of Th2 responses has been proposed to be independent of the adapter molecule myeloid differentiation factor 88 (MyD88) involved in signal transduction by TLRs. In this study we show that flagellin, the bacterial stimulus for TLR5, drives MyD88-dependent Th2-type immunity in mice. Flagellin promotes the secretion of IL-4 and IL-13 by Ag-specific CD4(+) T cells as well as IgG1 responses. The Th2-biased responses are associated with the maturation of DCs, which are shown to express TLR5. Flagellin-mediated DC activation requires MyD88 and induces NF-kappaB-dependent transcription and the production of low levels of proinflammatory cytokines. In addition, the flagellin-specific response is characterized by the lack of secretion of the Th1-promoting cytokine IL-12 p70. In conclusion, this study suggests that flagellin and, more generally, TLR ligands can control Th2 responses in a MyD88-dependent manner.
Resumo:
OBJECTIVES: In patients with septic shock, circulating monocytes become refractory to stimulation with microbial products. Whether this hyporesponsive state is induced by infection or is related to shock is unknown. To address this question, we measured TNF alpha production by monocytes or by whole blood obtained from healthy volunteers (controls), from patients with septic shock, from patients with severe infection (bacterial pneumonia) without shock, and from patients with cardiogenic shock without infection. MEASUREMENTS: The numbers of circulating monocytes, of CD14+ monocytes, and the expression of monocyte CD14 and the LPS receptor, were assessed by flow cytometry. Monocytes or whole blood were stimulated with lipopolysaccharide endotoxin (LPS), heat-killed Escherichia coli or Staphylococcus aureus, and TNF alpha production was measured by bioassay. RESULTS: The number of circulating monocytes, of CD14+ monocytes, and the monocyte CD14 expression were significantly lower in patients with septic shock than in controls, in patients with bacterial pneumonia or in those with cardiogenic shock (p < 0.001). Monocytes or whole blood of patients with septic shock exhibited a profound deficiency of TNF alpha production in response to all stimuli (p < 0.05 compared to controls). Whole blood of patients with cardiogenic shock also exhibited this defect (p < 0.05 compared to controls), although to a lesser extent, despite normal monocyte counts and normal CD14 expression. CONCLUSIONS: Unlike patients with bacterial pneumonia, patients with septic or cardiogenic shock display profoundly defective TNF alpha production in response to a broad range of infectious stimuli. Thus, down-regulation of cytokine production appears to occur in patients with systemic, but not localised, albeit severe, infections and also in patients with non-infectious circulatory failure. Whilst depletion of monocytes and reduced monocyte CD14 expression are likely to be critical components of the hyporesponsiveness observed in patients with septic shock, other as yet unidentified factors are at work in this group and in patients with cardiogenic shock.
Resumo:
Fibroblast growth factor (FGF) signaling is critical for a broad range of developmental processes. In 2003, Fibroblast growth factor receptor 1 (FGFR1) was discovered as a novel locus causing both forms of isolate GnRH Deficiency, Kallmann syndrome [KS with anosmia] and normosmic idiopathic hypogonadotropic hypogonadism [nIHH] eventually accounting for approximately 10% of gonadotropin-releasing hormone (GnRH) deficiency cases. Such cases are characterized by a broad spectrum of reproductive phenotypes from severe congenital forms of GnRH deficiency to reversal of HH. Additionally, the variable expressivity of both reproductive and non-reproductive phenotypes among patients and family members harboring the identical FGFR1 mutations has pointed to a more complex, oligogenic model for GnRH deficiency. Further, reversal of HH in patients carrying FGFR1 mutations suggests potential gene-environment interactions in human GnRH deficiency disorders.
Resumo:
BACKGROUND: The impact of preoperative impaired left ventricular ejection fraction (EF) in octogenarians following coronary bypass surgery on short-term survival was evaluated in this study. METHODS: A total of 147 octogenarians (mean age 82.1 ± 1.9 years) with coronary artery diseases underwent elective coronary artery bypass graft between January 2000 and December 2009. Patients were stratified into: Group I (n = 59) with EF >50%, Group II (n = 59) with 50% > EF >30% and in Group III (n = 29) with 30% > EF. RESULTS: There was no difference among the three groups regarding incidence of COPD, renal failure, congestive heart failure, diabetes, and preoperative cerebrovascular events. Postoperative atrial fibrillation was the sole independent predictive factor for in-hospital mortality (odds ratio (OR), 18.1); this was 8.5% in Group I, 15.3% in Group II and 10.3% in Group III. Independent predictive factors for mortality during follow up were: decrease of EF during follow-up for more that 5% (OR, 5.2), usage of left internal mammary artery as free graft (OR, 18.1), and EF in follow-up lower than 40% (OR, 4.8). CONCLUSIONS: The results herein suggest acceptable in-hospital as well short-term mortality in octogenarians with impaired EF following coronary artery bypass grafting (CABG) and are comparable to recent literature where the mortality of younger patients was up to 15% and short-term mortality up to 40%, respectively. Accordingly, we can also state that in an octogenarian cohort with impaired EF, CABG is a viable treatment with acceptable mortality.
Resumo:
Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2 mRNA and protein expression in mouse 3T3-L1 adipocytes. In liver, PPARalpha deletion leads to decreased glycogen levels in the refed state, which is paralleled by decreased expression of Gys-2 in fasted and refed state. Two putative PPAR response elements (PPREs) were identified in the mouse Gys-2 gene: one in the upstream promoter (DR-1prom) and one in intron 1 (DR-1int). It is shown that DR-1int is the response element for PPARs, while DR-1prom is the response element for Hepatic Nuclear Factor 4 alpha (HNF4alpha). In adipose tissue, which does not express HNF4alpha, DR-1prom is occupied by PPARbeta/delta and PPARgamma, yet binding does not translate into transcriptional activation of Gys-2. Overall, we conclude that mouse Gys-2 is a novel PPAR target gene and that transactivation by PPARs and HNF4alpha is mediated by two distinct response elements.
Resumo:
QUESTIONS UNDER STUDY: Iron deficiency with or without anaemia is the most common deficiency in the world. Its prevalence is higher in developing countries and in low socioeconomic populations. We aimed at determining and comparing the prevalence of iron deficiency in an immigrant and non-immigrant population. METHODS: Every child scheduled for a routine check-up at 12 months of age was allowed to participate in the study. Haemoglobin, ferritin, anthropometric data, familial and nutritional status were measured. RESULTS: 586 infants were eligible and 463 were included in the study as they had assessment data at 12 months. Children were divided into two groups: immigrants' children and non-immigrants' children. The global prevalence of iron deficiency was 5.7% at 12 months. A significant difference for iron deficiency was noticed between the groups at 12 months (p = 0.01). Among risk factors, immigration (odds ratio 2.91; 95% CI 1.05-8.04) and unemployment (odds ratio 6.08; 95% CI 1.18-31.30) had the higher odds in the multivariable analysis. CONCLUSION: The prevalence of iron deficiency in the immigrant population is higher than in non-immigrants. Immigration and the category of employment are risk factors for iron deficiency, as starting baby cereals before 9 months is a protective factor. Good socioeconomic conditions in Switzerland, the quality of food for pregnant women and young infants may be the explanation. A study up to five years of age is necessary before drawing general conclusions on infancy.
Resumo:
Exploratory and confirmatory factor analyses reported in the French technical manual of the WISC-IV provides evidence supporting a structure with four indices: Verbal Comprehension (VCI), Perceptual Reasoning (PRI), Working Memory (WMI), and Processing Speed (PSI). Although the WISC-IV is more attuned to contemporary theory, it is still not in total accordance with the dominant theory: the Cattell-Horn-Carroll (CHC) theory of cognitive ability. This study was designed to determine whether the French WISC-IV is better described with the four-factor solution or whether an alternative model based on the CHC theory is more appropriate. The intercorrelations matrix reported in the French technical manual was submitted to confirmatory factor analysis. A comparison of competing models suggests that a model based on the CHC theory fits the data better than the current WISC-IV structure. It appears that the French WISC-IV in fact measures six factors: crystallized intelligence (Gc), fluid intelligence (Gf), short-term memory (Gsm), processing speed (Gs), quantitative knowledge (Gq), and visual processing (Gv). We recommend that clinicians interpret the subtests of the French WISC-IV in relation to this CHC model in addition to the four indices.
Resumo:
NLRC5, a member of the NOD-like receptor (NLR) protein family, has recently been characterized as the master transcriptional regulator of MHCI molecules in lymphocytes, in which it is highly expressed. However, its role in activated dendritic cells (DCs), which are instrumental to initiate T cell responses, remained elusive. We show in this study that, following stimulation of DCs with inflammatory stimuli, not only did NLRC5 level increase, but also its importance in directing MHCI transcription. Despite markedly reduced mRNA and intracellular H2-K levels, we unexpectedly observed nearly normal H2-K surface display in Nlrc5(-/-) DCs. Importantly, this discrepancy between a strong intracellular and a mild surface defect in H2-K levels was observed also in DCs with H2-K transcription defects independent of Nlrc5. Hence, alongside with demonstrating the importance of NLRC5 in MHCI transcription in activated DCs, we uncover a general mechanism counteracting low MHCI surface expression. In agreement with the decreased amount of neosynthesized MHCI, Nlrc5(-/-) DCs exhibited a defective capacity to display endogenous Ags. However, neither T cell priming by endogenous Ags nor cross-priming ability was substantially affected in activated Nlrc5(-/-) DCs. Altogether, these data show that Nlrc5 deficiency, despite significantly affecting MHCI transcription and Ag display, is not sufficient to hinder T cell activation, underlining the robustness of the T cell priming process by activated DCs.