64 resultados para Exponential and trigonometrical octoniônic functions
em Université de Lausanne, Switzerland
Resumo:
The costs of coping with stressful situations are traded-off against other functions such as immune responses. This trade-off may explain why corticosterone secretion reduces immune reactions. Corticosterone differentially affects various immunity components. However, which component is suppressed varies between studies. It remains unclear whether the trade-off in energy, nutrition, autoimmunity or oxidative stress accounts for differential immunosuppression. In this study, we investigated whether corticosterone differentially affects the constitutive innate and humoral acquired immunity. We used barn owl nestlings, implanting 50% with a corticosterone-releasing pellet and the other 50% with a placebo pellet. To measure the effect on humoral immunity we vaccinated 50% of the corticosterone-nestlings and 50% of the placebo-nestlings with the antigens 'Tetravac' and the other 50% were injected with PBS. To assess the costs of elevated corticosterone, we measured body mass and resistance to oxidative stress. Administration of corticosterone increased corticosterone levels whereas vaccination induced the production of antibodies. Corticosterone reduced the production of antibodies, but it did not significantly affect the constitutive innate immunity. Corticosterone reduced body growth and resistance to oxidative stress. Under stressful conditions barn owl nestlings seem to keep the constitutive innate immunity, whereas elevated corticosterone levels negatively affected inducible immune responses. We found evidence that mounting a humoral immune reaction is not costly in terms of growth, but reduces the resistance to oxidative stress independently of corticosterone administration. We suggest that humoral immunity is suppressed because the risk of immunopathologies may be disproportionately high when mounting an antibody response under stressful situations.
Resumo:
Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.
Resumo:
Recent data showing expression of activating NK receptors (NKR) by conventional T lymphocytes raise the question of their role in the triggering of TCR-independent responses that could be damaging for the host. Transgenic mice expressing the activating receptor Ly49D/DAP12 offer the opportunity to better understand the relevance of ITAM signaling in the biology of T cells. In vitro experiments showed that Ly49D engagement on T lymphocytes by a cognate MHC class I ligand expressed by Chinese hamster ovary (CHO) cells or by specific Ab triggered cellular activation of both CD4 and CD8 populations with modulation of activation markers and cytokine production. The forced expression of the ITAM signaling chain DAP12 is mandatory for Ly49D-transgenic T cell activation. In addition, Ly49D stimulation induced T lymphocyte proliferation, which was much stronger for CD8 T cells. Phenotypic analysis of anti-Ly49D-stimulated CD8 T cells and their ability to produce high levels of IFN-gamma and to kill target cells indicate that Ly49D ligation generates effector cytotoxic CD8 T cells. Ly49D engagement by itself also triggered cytotoxic activity of activated CD8 T cells. Adoptive transfer experiments confirmed that Ly49D-transgenic CD8 T cells are able to control growth of CHO tumor cells or RMA cells transfected with Hm1-C4, the Ly49D ligand normally expressed by CHO. In conclusion, Ly49D engagement on T cells leads to T cell activation and to a full range of TCR-independent effector functions of CD8 T cells.
Resumo:
After antigenic challenge, naive T lymphocytes enter a program of proliferation and differentiation during the course of which they acquire effector functions and may ultimately become memory cells. In humans, the pathways of effector and memory T-cell differentiation remain poorly defined. Here we describe the properties of 2 CD8+ T-lymphocyte subsets, RA+CCR7-27+28+ and RA+CCR7-27+28-, in human peripheral blood. These cells display phenotypic and functional features that are intermediate between naive and effector T cells. Like naive T lymphocytes, both subsets show relatively long telomeres. However, unlike the naive population, these T cells exhibit reduced levels of T-cell receptor excision circles (TRECs), indicating they have undergone additional rounds of in vivo cell division. Furthermore, we show that they also share effector-type properties. At equivalent in vivo replicative history, the 2 subsets express high levels of Fas/CD95 and CD11a, as well as increasing levels of effector mediators such as granzyme B, perforin, interferon gamma, and tumor necrosis factor alpha. Both display partial ex vivo cytolytic activity and can be found among cytomegalovirus-specific cytolytic T cells. Taken together, our data point to the presence of T cells with intermediate effector-like functions and suggest that these subsets consist of T lymphocytes that are evolving toward a more differentiated effector or effector-memory stage.
Resumo:
In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.
Resumo:
SUMMARYAstrocytes represent the largest cell population in the human brain. In addition to a well established role as metabolic support for neuronal activity, in the last years these cells have been found to accomplish other important and, sometimes, unexpected functions. The tight enwrapping of synapses by astrocytic processes and the predominant expression of glutamate uptake carriers in the astrocytic rather than neuronal plasma membranes brought to the definition of a critical involvement of astrocytes in the clearance of glutamate from synaptic junctions. Moreover, several publications showed that astrocytes are able to release chemical transmitters (gliotransmitters) suggesting their active implication in the control of synaptic functions. Among gliotransmitters, the best characterized is glutamate, which has been proposed to be released from astrocytes in a Ca2+ dependent manner via exocytosis of synaptic-like microvesicles.In my thesis I present results leading to substantial advancement of the understanding of the mechanisms by which astrocytes modulate synaptic activity in the hippocampus, notably at excitatory synapses on dentate granule cells. I show that tumor necrosis factor- alpha (TNFa), a molecule that is generally involved in immune system functions, critically controls astrocyte-to-synapse communication (gliotransmission) in the brain. With constitutive levels of TNFa present, activation of purinergic G protein-coupled receptors in astrocytes, called P2Y1 receptors, induces localized intracellular calcium ([Ca2+]j) elevation in astrocytic processes (measured by two-photon microscopy) followed by glutamate release and activation of pre-synaptic NMDA receptors resulting in synaptic potentiation. In preparations lacking TNFa, astrocytes respond with identical [Ca2+]i elevations but fail to induce neuromodulation. I find that TNFa specifically controls the glutamate release step of gliotransmission. Addition of very low (picomolar) TNFa concentrations to preparations lacking the cytokine, promptly reconstitutes both normal exocytosis in cultured astrocytes and gliotransmission in hippocampal slices. These data provide the first demonstration that gliotransmission and its synaptic effects are controlled not only by astrocyte [Ca2+]i elevations but also by permissive/homeostatic factors like TNFa.In addition, I find that higher and presumably pathological TNFa concentrations do not act just permissively but instead become direct and potent triggers of glutamate release from astrocytes, leading to a strong enhancement of excitatory synaptic activity. The TNFa action, like the one observed upon P2Y1R activation, is mediated by pre-synaptic NMDA receptors, but in this case the effect is long-lasting, and not reversible. Moreover, I report that a necessary molecular target for this action of TNFa is TNFR1, one of the two specific receptors for the cytokine, as I found that TNFa was unable to induce synaptic potentiation when applied in slices from TNFR1 knock-out (Tnfrlv") mice. I then created a double transgenic mouse model where TNFR1 is knocked out in all cells but can be re-expressed selectively in astrocytes and I report that activation of the receptors in these cells is sufficient to reestablish TNFa-dependent long-lasting potentiation of synaptic activity in the TNFR1 knock-out mice.I therefore discovered that TNFa is a primary molecule displaying both permissive and instructive roles on gliotransmission controlling synaptic functions. These reports might have profound implications for the understanding of both physiological and pathological processes associated to TNFa production, including inflammatory processes in the brain.RÉSUMÉLes astrocytes sont les cellules les plus abondantes du cerveau humain. Outre leur rôle bien établi dans le support métabolique de l'activité neuronale, d'autres fonctions importantes, et parfois inattendues de ces cellules ont été mises en lumière au cours de ces dernières années. Les astrocytes entourent étroitement les synapses de leurs fins processus qui expriment fortement les transporteurs du glutamate et permettent ainsi aux astrocytes de jouer un rôle critique dans l'élimination du glutamate de la fente synaptique. Néanmoins, les astrocytes semblent être capables de jouer un rôle plus intégratif en modulant l'activité synaptique, notamment par la libération de transmetteurs (gliotransmetteurs). Le gliotransmetteur le plus étudié est le glutamate qui est libéré par l'exocytose régulée de petites vésicules ressemblant aux vésicules synaptiques (SLMVs) via un mécanisme dépendant du calcium.Les résultats présentés dans cette thèse permettent une avancée significative dans la compréhension du mode de communication de ces cellules et de leur implication dans la transmission de l'information synaptique dans l'hippocampe, notamment des synapses excitatrices des cellules granulaires du gyrus dentelé. J'ai pu montrer que le « facteur de nécrose tumorale alpha » (TNFa), une cytokine communément associée au système immunitaire, est aussi fondamentale pour la communication entre astrocyte et synapse. Lorsqu'un niveau constitutif très bas de TNFa est présent, l'activation des récepteurs purinergiques P2Y1 (des récepteurs couplés à protéine G) produit une augmentation locale de calcium (mesurée en microscopie bi-photonique) dans l'astrocyte. Cette dernière déclenche ensuite une libération de glutamate par les astrocytes conduisant à l'activation de récepteurs NMDA présynaptiques et à une augmentation de l'activité synaptique. En revanche, dans la souris TNFa knock-out cette modulation de l'activité synaptique par les astrocytes n'est pas bien qu'ils présentent toujours une excitabilité calcique normale. Nous avons démontré que le TNFa contrôle spécifiquement l'exocytose régulée des SLMVs astrocytaires en permettant la fusion synchrone de ces vésicules et la libération de glutamate à destination des récepteurs neuronaux. Ainsi, nous avons, pour la première fois, prouvé que la modulation de l'activité synaptique par l'astrocyte nécessite, pour fonctionner correctement, des facteurs « permissifs » comme le TNFa, agissant sur le mode de sécrétion du glutamate astrocytaire.J'ai pu, en outre, démontrer que le TNFa, à des concentrations plus élevées (celles que l'on peut observer lors de conditions pathologiques) provoque une très forte augmentation de l'activité synaptique, agissant non plus comme simple facteur permissif mais bien comme déclencheur de la gliotransmission. Le TNFa provoque 1'activation des récepteurs NMD A pré-synaptiques (comme dans le cas des P2Y1R) mais son effet est à long terme et irréversible. J'ai découvert que le TNFa active le récepteur TNFR1, un des deux récepteurs spécifiques pour le TNFa. Ainsi, l'application de cette cytokine sur une tranche de cerveau de souris TNFR1 knock-out ne produit aucune modification de l'activité synaptique. Pour vérifier l'implication des astrocytes dans ce processus, j'ai ensuite mis au point un modèle animal doublement transgénique qui exprime le TNFR1 uniquement dans les astrocytes. Ce dernier m'a permis de prouver que l'activation des récepteurs TNFR1 astrocytaires est suffisante pour induire une augmentation de l'activité synaptique de manière durable.Nous avons donc découvert que le TNFa possède un double rôle, à la fois un rôle permissif et actif, dans le contrôle de la gliotransmission et, par conséquent, dans la modulation de l'activité synaptique. Cette découverte peut potentiellement être d'une extrême importance pour la compréhension des mécanismes physiologiques et pathologiques associés à la production du TNFa, en particulier lors de conditions inflammatoires.RÉSUMÉ GRAND PUBLICLes astrocytes représentent la population la plus nombreuse de cellules dans le cerveau humain. On sait, néanmoins, très peu de choses sur leurs fonctions. Pendant très longtemps, les astrocytes ont uniquement été considérés comme la colle du cerveau, un substrat inerte permettant seulement de lier les cellules neuronales entre elles. Il n'y a que depuis peu que l'on a découvert de nouvelles implications de ces cellules dans le fonctionnement cérébral, comme, entre autres, une fonction de support métabolique de l'activité neuronale et un rôle dans la modulation de la neurotransmission. C'est ce dernier aspect qui fait l'objet de mon projet de thèse.Nous avons découvert que l'activité des synapses (régions qui permettent la communication d'un neurone à un autre) qui peut être potentialisée par la libération du glutamate par les astrocytes, ne peut l'être que dans des conditions astrocytaires très particulières. Nous avons, en particulier, identifié une molécule, le facteur de nécrose tumorale alpha (TNFa) qui joue un rôle critique dans cette libération de glutamate astrocytaire.Le TNFa est surtout connu pour son rôle dans le système immunitaire et le fait qu'il est massivement libéré lors de processus inflammatoires. Nous avons découvert qu'en concentration minime, correspondant à sa concentration basale, le TNFa peut néanmoins exercer un rôle indispensable en permettant la communication entre l'astrocyte et le neurone. Ce mode de fonctionnement est assez probablement représentatif d'un processus physiologique qui permet d'intégrer la communication astrocyte/neurone au fonctionnement général du cerveau. Par ailleurs, nous avons également démontré qu'en quantité plus importante, le TNFa change son mode de fonctionnement et agit comme un stimulateur direct de la libération de glutamate par l'astrocyte et induit une activation persistante de l'activité synaptique. Ce mode de fonctionnement est assez probablement représentatif d'un processus pathologique.Nous sommes également arrivés à ces conclusions grâce à la mise en place d'une nouvelle souche de souris doublement transgéniques dans lesquelles seuls les astrocytes (etnon les neurones ou les autres cellules cérébrales) sont capables d'être activés par le TNFa.
Resumo:
Preface The starting point for this work and eventually the subject of the whole thesis was the question: how to estimate parameters of the affine stochastic volatility jump-diffusion models. These models are very important for contingent claim pricing. Their major advantage, availability T of analytical solutions for characteristic functions, made them the models of choice for many theoretical constructions and practical applications. At the same time, estimation of parameters of stochastic volatility jump-diffusion models is not a straightforward task. The problem is coming from the variance process, which is non-observable. There are several estimation methodologies that deal with estimation problems of latent variables. One appeared to be particularly interesting. It proposes the estimator that in contrast to the other methods requires neither discretization nor simulation of the process: the Continuous Empirical Characteristic function estimator (EGF) based on the unconditional characteristic function. However, the procedure was derived only for the stochastic volatility models without jumps. Thus, it has become the subject of my research. This thesis consists of three parts. Each one is written as independent and self contained article. At the same time, questions that are answered by the second and third parts of this Work arise naturally from the issues investigated and results obtained in the first one. The first chapter is the theoretical foundation of the thesis. It proposes an estimation procedure for the stochastic volatility models with jumps both in the asset price and variance processes. The estimation procedure is based on the joint unconditional characteristic function for the stochastic process. The major analytical result of this part as well as of the whole thesis is the closed form expression for the joint unconditional characteristic function for the stochastic volatility jump-diffusion models. The empirical part of the chapter suggests that besides a stochastic volatility, jumps both in the mean and the volatility equation are relevant for modelling returns of the S&P500 index, which has been chosen as a general representative of the stock asset class. Hence, the next question is: what jump process to use to model returns of the S&P500. The decision about the jump process in the framework of the affine jump- diffusion models boils down to defining the intensity of the compound Poisson process, a constant or some function of state variables, and to choosing the distribution of the jump size. While the jump in the variance process is usually assumed to be exponential, there are at least three distributions of the jump size which are currently used for the asset log-prices: normal, exponential and double exponential. The second part of this thesis shows that normal jumps in the asset log-returns should be used if we are to model S&P500 index by a stochastic volatility jump-diffusion model. This is a surprising result. Exponential distribution has fatter tails and for this reason either exponential or double exponential jump size was expected to provide the best it of the stochastic volatility jump-diffusion models to the data. The idea of testing the efficiency of the Continuous ECF estimator on the simulated data has already appeared when the first estimation results of the first chapter were obtained. In the absence of a benchmark or any ground for comparison it is unreasonable to be sure that our parameter estimates and the true parameters of the models coincide. The conclusion of the second chapter provides one more reason to do that kind of test. Thus, the third part of this thesis concentrates on the estimation of parameters of stochastic volatility jump- diffusion models on the basis of the asset price time-series simulated from various "true" parameter sets. The goal is to show that the Continuous ECF estimator based on the joint unconditional characteristic function is capable of finding the true parameters. And, the third chapter proves that our estimator indeed has the ability to do so. Once it is clear that the Continuous ECF estimator based on the unconditional characteristic function is working, the next question does not wait to appear. The question is whether the computation effort can be reduced without affecting the efficiency of the estimator, or whether the efficiency of the estimator can be improved without dramatically increasing the computational burden. The efficiency of the Continuous ECF estimator depends on the number of dimensions of the joint unconditional characteristic function which is used for its construction. Theoretically, the more dimensions there are, the more efficient is the estimation procedure. In practice, however, this relationship is not so straightforward due to the increasing computational difficulties. The second chapter, for example, in addition to the choice of the jump process, discusses the possibility of using the marginal, i.e. one-dimensional, unconditional characteristic function in the estimation instead of the joint, bi-dimensional, unconditional characteristic function. As result, the preference for one or the other depends on the model to be estimated. Thus, the computational effort can be reduced in some cases without affecting the efficiency of the estimator. The improvement of the estimator s efficiency by increasing its dimensionality faces more difficulties. The third chapter of this thesis, in addition to what was discussed above, compares the performance of the estimators with bi- and three-dimensional unconditional characteristic functions on the simulated data. It shows that the theoretical efficiency of the Continuous ECF estimator based on the three-dimensional unconditional characteristic function is not attainable in practice, at least for the moment, due to the limitations on the computer power and optimization toolboxes available to the general public. Thus, the Continuous ECF estimator based on the joint, bi-dimensional, unconditional characteristic function has all the reasons to exist and to be used for the estimation of parameters of the stochastic volatility jump-diffusion models.
Resumo:
Background and Aims The males and females of many dioecious plant species differ from one another in important life-history traits, such as their size. If male and female reproductive functions draw on different resources, for example, one should expect males and females to display different allocation strategies as they grow. Importantly, these strategies may differ not only between the two sexes, but also between plants of different age and therefore size. Results are presented from an experiment that asks whether males and females of Mercurialis annua, an annual plant with indeterminate growth, differ over time in their allocation of two potentially limiting resources (carbon and nitrogen) to vegetative (below-and above-ground) and reproductive tissues.Methods Comparisons were made of the temporal patterns of biomass allocation to shoots, roots and reproduction and the nitrogen content in the leaves between the sexes of M. annua by harvesting plants of each sex after growth over different periods of time.Key Results and Conclusions Males and females differed in their temporal patterns of allocation. Males allocated more to reproduction than females at early stages, but this trend was reversed at later stages. Importantly, males allocated proportionally more of their biomass towards roots at later stages, but the roots of females were larger in absolute terms. The study points to the important role played by both the timing of resource deployment and the relative versus absolute sizes of the sinks and sources in sexual dimorphism of an annual plant.
Resumo:
TRAIL induces apoptosis through two closely related receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5). Here we show that TRAIL-R1 can associate with TRAIL-R2, suggesting that TRAIL may signal through heteroreceptor signaling complexes. Both TRAIL receptors bind the adaptor molecules FADD and TRADD, and both death signals are interrupted by a dominant negative form of FADD and by the FLICE-inhibitory protein FLIP. The recruitment of TRADD may explain the potent activation of NF-kappaB observed by TRAIL receptors. Thus, TRAIL receptors can signal both death and gene transcription, functions reminiscent of those of TNFR1 and TRAMP, two other members of the death receptor family.
Resumo:
Several methods are available for coding body movement in nonverbal behavior research, but there is no consensus on a reliable coding system that can be used for the study of emotion expression. Adopting an integrative approach, we developed a new method, the Body Action and Posture (BAP) coding system, for the time-aligned micro description of body movement on an anatomical level (different articulations of body parts), a form level (direction and orientation of movement), and a functional level (communicative and self-regulatory functions). We applied the system to a new corpus of acted emotion portrayals, examined its comprehensiveness and demonstrated intercoder reliability at three levels: a) occurrence, b) temporal precision and c) segmentation. We discuss issues for further validation and propose some research applications.
Resumo:
The synthesis of poly(RboP), the main Bacillus subtilis W23 teichoic acid, is encoded by tarDF-tarABIJKL operons, the latter being controlled by two promoters designated PtarA-int and PtarA-ext. Analysis by lacZ fusions reveals that PtarA-int activity exhibits sharp increases at the beginning and end of the transition between exponential and stationary growth phase. As confirmed by mRNA quantification, these increases are mediated by ECF sigma factors sigmaX and sigmaM respectively. In liquid media, strain W23 sigX sigM double mutants experience serious difficulties in the transition and stationary growth phases. Inactivation of sigmaX- and sigmaM-controlled regulons, which precludes transcription from PtarA-int, leads to (i) delays in chromosome segregation and septation and (ii) a transient loss of up to 30% of the culture OD or lysis. However, specific inactivation of PtarA-int, leading mainly to a shortage of poly(RboP), does not affect growth while, nevertheless, interfering with normal septation, as revealed by electron microscopy. The different sigM transcription in strains W23 and 168 is discussed. In W23, expression of tarA and sigM, which is shown to control divIC, is inversely correlated with growth rate, suggesting that the sigM regulon is involved in the control of cell division.
Resumo:
Vaginal delivery can cause lesions of the various pelvic structures responsible for the mechanisms of continence. These lesions may perhaps be prevented in the future by measuring pressure generated during childbirth. Tear of the anal sphincter during childbirth is a marker of a global impairment of the urinary, ano-rectal and sexual pelvic functions in the short and medium term. Persistence of a defect of the anal sphincter is frequent in spite of immediate suture. The correlation between these defects and ano-rectal incontinence are not established in our experience. The quality of the contraction of the sphincter complex and pubo-rectal sling seems to play a more important role in ano-rectal continence after a traumatic childbirth.
Resumo:
The tumor necrosis factor (TNF)/TNF receptor (TNFR) families of ligands and receptors are implicated in a variety of physiological and pathological processes and regulate cellular functions as diverse as proliferation, differentiation, and death. Recombinant forms of these ligands and receptors can act to agonize or antagonize these functions and are therefore useful for laboratory studies and may have clinical applications. A protocol is presented for the expression and purification of dimeric soluble receptors fused to the Fc portion of human IgG1 and of soluble, N-terminally Flag-tagged ligands. Soluble recombinant proteins are easier to handle than membrane-bound proteins and the use of tags greatly facilitates their detection and purification. In addition, some tags may provide enhanced biological activity to the recombinant proteins (mainly by oligomerization and stabilization effects) and facilitate their functional characterization. Expression in bacterial (for selected ligands) and eukaryotic expression systems (for ligands and receptors) was performed using M15 pREP4 bacteria and human embryonic kidney 293 cells, respectively. The yield of purified protein is about 1 mg/liter for the mammalian expression system and several milligrams per liter for the bacterial expression system. Protocols are given for a specific ligand-receptor pair, namely TRAIL (Apo-2L) and TRAIL receptor 2 (DR5), but can be applied to other ligands and receptors of the TNF family.
Resumo:
We studied the response to F+0 renography and the relative and absolute individual kidney function in neonates and < 6-mo-old infants before and after surgery for unilateral ureteropelvic junction obstruction (UJO). METHODS: The results obtained at diagnosis and after pyeloplasty for 9 children (8 boys, 1 girl; age range, 0.8-5.9 mo; mean age +/- SD, 2.4 +/- 1.5 mo) with proven unilateral UJO (i.e., affected kidney [AK]) and an unremarkable contralateral kidney (i.e., normal kidney [NK]) were evaluated and compared with a control group of 10 children (6 boys, 4 girls; age range, 0.8-2.8 mo; mean age, 1.5 +/- 0.7 mo) selected because of symmetric renal function, absence of vesicoureteral reflux or infection, and an initially dilated but not obstructed renal pelvis as proven by follow-up. Renography was performed for 20 min after injection of (123)I-hippuran (OIH) (0.5-1.0 MBq/kg) immediately followed by furosemide (1 mg/kg). The relative and absolute renal functions and the response to furosemide were measured on background-subtracted and depth-corrected renograms. The response to furosemide was quantified by an elimination index (EI), defined as the ratio of the 3- to 20-min activities: An EI > or = 3 was considered definitively normal and an EI < or = 1 definitively abnormal. If EI was equivocal (1 < EI < 3), the response to gravity-assisted drainage was used to differentiate AKs from NKs. Absolute separate renal function was measured by an accumulation index (AI), defined as the percentage of (123)I-OIH (%ID) extracted by the kidney 30-90 s after maximal cardiac activity. RESULTS: All AKs had definitively abnormal EIs at diagnosis (mean, 0.56 +/- 0.12) and were significantly lower than the EIs of the NKs (mean, 3.24 +/- 1.88) and of the 20 control kidneys (mean, 3.81 +/- 1.97; P < 0.001). The EIs of the AKs significantly improved (mean, 2.81 +/- 0.64; P < 0.05) after pyeloplasty. At diagnosis, the AIs of the AKs were significantly lower (mean, 6.31 +/- 2.33 %ID) than the AIs of the NKs (mean, 9.43 +/- 1.12 %ID) and of the control kidneys (mean, 9.05 +/- 1.17 %ID; P < 0.05). The AIs of the AKs increased at follow-up (mean, 7.81 +/- 2.23 %ID) but remained lower than those of the NKs (mean, 10.75 +/- 1.35 %ID; P < 0.05). CONCLUSION: In neonates and infants younger than 6 mo, (123)I-OIH renography with early furosemide injection (F+0) allowed us to reliably diagnose AKs and to determine if parenchymal function was normal or impaired and if it improved after surgery.