3 resultados para Explicit hazard model

em Université de Lausanne, Switzerland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of the classical compound Poisson process in collective risk theory, we study a modification of the horizontal dividend barrier strategy by introducing random observation times at which dividends can be paid and ruin can be observed. This model contains both the continuous-time and the discrete-time risk model as a limit and represents a certain type of bridge between them which still enables the explicit calculation of moments of total discounted dividend payments until ruin. Numerical illustrations for several sets of parameters are given and the effect of random observation times on the performance of the dividend strategy is studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the traditional actuarial risk model, if the surplus is negative, the company is ruined and has to go out of business. In this paper we distinguish between ruin (negative surplus) and bankruptcy (going out of business), where the probability of bankruptcy is a function of the level of negative surplus. The idea for this notion of bankruptcy comes from the observation that in some industries, companies can continue doing business even though they are technically ruined. Assuming that dividends can only be paid with a certain probability at each point of time, we derive closed-form formulas for the expected discounted dividends until bankruptcy under a barrier strategy. Subsequently, the optimal barrier is determined, and several explicit identities for the optimal value are found. The surplus process of the company is modeled by a Wiener process (Brownian motion).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a spectrally-negative Markov additive process as a model of a risk process in a random environment. Following recent interest in alternative ruin concepts, we assume that ruin occurs when an independent Poissonian observer sees the process as negative, where the observation rate may depend on the state of the environment. Using an approximation argument and spectral theory, we establish an explicit formula for the resulting survival probabilities in this general setting. We also discuss an efficient evaluation of the involved quantities and provide a numerical illustration.