27 resultados para Explicit Finite Element Macro Modelling Method
em Université de Lausanne, Switzerland
Resumo:
Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%).
Resumo:
Total ankle replacement remains a less satisfactory solution compared to other joint replacements. The goal of this study was to develop and validate a finite element model of total ankle replacement, for future testing of hypotheses related to clinical issues. To validate the finite element model, an experimental setup was specifically developed and applied on 8 cadaveric tibias. A non-cemented press fit tibial component of a mobile bearing prosthesis was inserted into the tibias. Two extreme anterior and posterior positions of the mobile bearing insert were considered, as well as a centered one. An axial force of 2kN was applied for each insert position. Strains were measured on the bone surface using digital image correlation. Tibias were CT scanned before implantation, after implantation, and after mechanical tests and removal of the prosthesis. The finite element model replicated the experimental setup. The first CT was used to build the geometry and evaluate the mechanical properties of the tibias. The second CT was used to set the implant position. The third CT was used to assess the bone-implant interface conditions. The coefficient of determination (R-squared) between the measured and predicted strains was 0.91. Predicted bone strains were maximal around the implant keel, especially at the anterior and posterior ends. The finite element model presented here is validated for future tests using more physiological loading conditions.
Impact of partial-thickness tears on supraspinatus tendon strain based on a finite element analysis.
Resumo:
BACKGROUND: Articular surfaces reconstruction is essential in total shoulder arthroplasty. Because of the limited glenoid bone support, thin glenoid component could improve anatomical reconstruction, but adverse mechanical effects might appear. METHODS: With a numerical musculoskeletal shoulder model, we analysed and compared three values of thickness of a typical all-polyethylene glenoid component: 2, 4 (reference) and 6mm. A loaded movement of abduction in the scapular plane was simulated. We evaluated the humeral head translation, the muscle moment arms, the joint force, the articular contact pattern, and the polyethylene and cement stress. Findings Decreasing polyethylene thickness from 6 to 2mm slightly increased humeral head translation and muscle moment arms. This induced a small decreased of the joint reaction force, but important increase of stress within the polyethylene and the cement mantel. Interpretation The reference thickness of 4mm seems a good compromise to avoid stress concentration and joint stuffing.
Resumo:
Partial-thickness tears of the supraspinatus tendon frequently occur at its insertion on the greater tubercule of the humerus, causing pain and reduced strength and range of motion. The goal of this work was to quantify the loss of loading capacity due to tendon tears at the insertion area. A finite element model of the supraspinatus tendon was developed using in vivo magnetic resonance images data. The tendon was represented by an anisotropic hyperelastic constitutive law identified with experimental measurements. A failure criterion was proposed and calibrated with experimental data. A partial-thickness tear was gradually increased, starting from the deep articular-sided fibres. For different values of tendon tear thickness, the tendon was mechanically loaded up to failure. The numerical model predicted a loss in loading capacity of the tendon as the tear thickness progressed. Tendon failure was more likely when the tendon tear exceeded 20%. The predictions of the model were consistent with experimental studies. Partial-thickness tears below 40% tear are sufficiently stable to persist physiotherapeutic exercises. Above 60% tear surgery should be considered to restore shoulder strength.
Resumo:
BACKGROUND: Although the importance of accurate femoral reconstruction to achieve a good functional outcome is well documented, quantitative data on the effects of a displacement of the femoral center of rotation on moment arms are scarce. The purpose of this study was to calculate moment arms after nonanatomical femoral reconstruction. METHODS: Finite element models of 15 patients including the pelvis, the femur, and the gluteal muscles were developed. Moment arms were calculated within the native anatomy and compared to distinct displacement of the femoral center of rotation (leg lengthening of 10 mm, loss of femoral offset of 20%, anteversion ±10°, and fixed anteversion at 15°). Calculations were performed within the range of motion observed during a normal gait cycle. RESULTS: Although with all evaluated displacements of the femoral center of rotation, the abductor moment arm remained positive, some fibers initially contributing to extension became antagonists (flexors) and vice versa. A loss of 20% of femoral offset led to an average decrease of 15% of abductor moment. Femoral lengthening and changes in femoral anteversion (±10°, fixed at 15°) led to minimal changes in abductor moment arms (maximum change of 5%). Native femoral anteversion correlated with the changes in moment arms induced by the 5 variations of reconstruction. CONCLUSION: Accurate reconstruction of offset is important to maintaining abductor moment arms, while changes of femoral rotation had minimal effects. Patients with larger native femoral anteversion appear to be more susceptible to femoral head displacements.
Resumo:
In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projection method. In particular, the stabilization of the continuous lowest equal order pair finite volume element discretization is achieved by enriching the velocity space with local functions that do not necessarily vanish on the element boundaries. Finally, some numerical experiments that confirm the predicted behavior of the method are provided.
Resumo:
Electrical Impedance Tomography (EIT) is an imaging method which enables a volume conductivity map of a subject to be produced from multiple impedance measurements. It has the potential to become a portable non-invasive imaging technique of particular use in imaging brain function. Accurate numerical forward models may be used to improve image reconstruction but, until now, have employed an assumption of isotropic tissue conductivity. This may be expected to introduce inaccuracy, as body tissues, especially those such as white matter and the skull in head imaging, are highly anisotropic. The purpose of this study was, for the first time, to develop a method for incorporating anisotropy in a forward numerical model for EIT of the head and assess the resulting improvement in image quality in the case of linear reconstruction of one example of the human head. A realistic Finite Element Model (FEM) of an adult human head with segments for the scalp, skull, CSF, and brain was produced from a structural MRI. Anisotropy of the brain was estimated from a diffusion tensor-MRI of the same subject and anisotropy of the skull was approximated from the structural information. A method for incorporation of anisotropy in the forward model and its use in image reconstruction was produced. The improvement in reconstructed image quality was assessed in computer simulation by producing forward data, and then linear reconstruction using a sensitivity matrix approach. The mean boundary data difference between anisotropic and isotropic forward models for a reference conductivity was 50%. Use of the correct anisotropic FEM in image reconstruction, as opposed to an isotropic one, corrected an error of 24 mm in imaging a 10% conductivity decrease located in the hippocampus, improved localisation for conductivity changes deep in the brain and due to epilepsy by 4-17 mm, and, overall, led to a substantial improvement on image quality. This suggests that incorporation of anisotropy in numerical models used for image reconstruction is likely to improve EIT image quality.
Resumo:
The infinite slope method is widely used as the geotechnical component of geomorphic and landscape evolution models. Its assumption that shallow landslides are infinitely long (in a downslope direction) is usually considered valid for natural landslides on the basis that they are generally long relative to their depth. However, this is rarely justified, because the critical length/depth (L/H) ratio below which edge effects become important is unknown. We establish this critical L/H ratio by benchmarking infinite slope stability predictions against finite element predictions for a set of synthetic two-dimensional slopes, assuming that the difference between the predictions is due to error in the infinite slope method. We test the infinite slope method for six different L/H ratios to find the critical ratio at which its predictions fall within 5% of those from the finite element method. We repeat these tests for 5000 synthetic slopes with a range of failure plane depths, pore water pressures, friction angles, soil cohesions, soil unit weights and slope angles characteristic of natural slopes. We find that: (1) infinite slope stability predictions are consistently too conservative for small L/H ratios; (2) the predictions always converge to within 5% of the finite element benchmarks by a L/H ratio of 25 (i.e. the infinite slope assumption is reasonable for landslides 25 times longer than they are deep); but (3) they can converge at much lower ratios depending on slope properties, particularly for low cohesion soils. The implication for catchment scale stability models is that the infinite length assumption is reasonable if their grid resolution is coarse (e.g. >25?m). However, it may also be valid even at much finer grid resolutions (e.g. 1?m), because spatial organization in the predicted pore water pressure field reduces the probability of short landslides and minimizes the risk that predicted landslides will have L/H ratios less than 25. Copyright (c) 2012 John Wiley & Sons, Ltd.