104 resultados para Exhumed mantle
em Université de Lausanne, Switzerland
Resumo:
Introduction: Mantle cell lymphoma (MCL) accounts for 6% of all B-cell lymphomas and remains incurable for most patients. Those who relapse after first line therapy or hematopoietic stem cell transplantation have a dismal prognosis with short response duration after salvage therapy. On a molecular level, MCL is characterised by the translocation t[11;14] leading to Cyclin D1 overexpression. Cyclin D1 is downstream of the mammalian target of rapamycin (mTOR) kinase and can be effectively blocked by mTOR inhibitors such as temsirolimus. We set out to define the single agent activity of the orally available mTOR inhibitor everolimus (RAD001) in a prospective, multi-centre trial in patients with relapsed or refractory MCL (NCT00516412). The study was performed in collaboration with the EU-MCL network. Methods: Eligible patients with histologically/cytologically confirmed relapsed (not more than 3 prior lines of systemic treatment) or refractory MCL received everolimus 10 mg orally daily on day 1 - 28 of each cycle (4 weeks) for 6 cycles or until disease progression. The primary endpoint was the best objective response with adverse reactions, time to progression (TTP), time to treatment failure, response duration and molecular response as secondary endpoints. A response rate of 10% was considered uninteresting and, conversely, promising if 30%. The required sample size was 35 pts using the Simon's optimal two-stage design with 90% power and 5% significance. Results: A total of 36 patients with 35 evaluable patients from 19 centers were enrolled between August 2007 and January 2010. The median age was 69.4 years (range 40.1 to 84.9 years), with 22 males and 13 females. Thirty patients presented with relapsed and 5 with refractory MCL with a median of two prior therapies. Treatment was generally well tolerated with anemia (11%), thrombocytopenia (11%), neutropenia (8%), diarrhea (3%) and fatigue (3%) being the most frequent complications of CTC grade III or higher. Eighteen patients received 6 or more cycles of everolimus treatment. The objective response rate was 20% (95% CI: 8-37%) with 2 CR, 5 PR, 17 SD, and 11 PD. At a median follow-up of 6 months, TTP was 5.45 months (95% CI: 2.8-8.2 months) for the entire population and 10.6 months for the 18 patients receiving 6 or more cycles of treatment. Conclusion: This study demonstrates that single agent everolimus 10 mg once daily orally is well tolerated. The null hypothesis of inactivity could be rejected indicating a moderate anti-lymphoma activity in relapsed/refractory MCL. Further studies of either everolimus in combination with chemotherapy or as single agent for maintenance treatment are warranted in MCL.
Resumo:
To constrain deformation temperatures of mantle shear zones, we studied a strike-slip shear zone (Hilti massif, Semail ophiolite, Oman) and focused on the interaction between microstructural mechanisms and chemical equilibration processes. Quantitative microfabric analysis on harzburgites with different deformation intensity (porphyroclastic tectonite, mylonite, and ultramylonite) was combined with orthopyroxene geothermometry. The average grain size of all phases decreases with decreasing shear zone thickness. Dynamic recrystallization of porphyroclasts in combination with dissolution-precipitation and nucleation result in small-sized, chemically equilibrated pyroxenes. The composition of orthopyroxene was used to calculate deformation temperatures. In the case of the porphyroclastic tectonites, the chemical composition of orthopyroxene has been reset by diffusion yielding temperature estimates of 880-900 degrees C. The mylonites were deformed by dislocation creep of olivine and show a broad range of calculated temperatures, which result from a combination of grain size reduction and inheritance of equilibrium compositions from earlier high-temperature events and diffusion. In mylonites, diffusion profiles combined with geothermometry and grain size analysis indicate a mylonitic deformation temperature of 800-900 degrees C possibly followed by diffusion. In ultramylonites, the smallest grains (<30 mu m) reveal equilibration at temperatures of similar to 700 degrees C during the last stages of ductile deformation, which was dominated by diffusion creep of olivine. Our results provide a crucial link between temperature and evolution of microstructures from dislocation creep to diffusion creep in mantle shear zones.
Resumo:
The Kermanshah Crush Zone (Zagros, Iran) comprises elements from the Tethys Ocean and the former ocean-continent transition. Serpentinites and gabbros exposed in this area were formerly interpreted as originated from Tethys ocean and other residual Tethys oceanic domains all situated northeast of the Bisotoun platform. However, the structural relationships between these ultramafic units remained unclear. New field work in the Kermanshah-Harsin area led to the description of detachment faults over serpentinised mantle. ``Mid-Cretaceous'' carbonate ``extensional allochthons'' (pre-rift) and pelagic sediments (syn- to post-rift) dated from the Liassic are exposed above these detachments. Such an age mismatch can be explained by a polyphased mantle exhumation in a narrow basin along the Arabian margin with the assumption that no radiolarite nappe has been thrusted over the Bisotoun. Another detachment has been identified further to the NE on Eocene gabbro. So far, this one is considered as an intra-oceanic detachment from the residual Tethys. A first evolution model is proposed from early Jurassic to late Cretaceous obduction along with how this interpretation may be improved by future field work.
Resumo:
This study analyses the stratigraphy, structure and kinematics of the northern part of the Adula nappe of the Central Alps. The Adula nappe is one of the highest basement nappes in the Lower Penninic nappe stack of the Lepontine Dome. This structural position makes possible the investigation of the transition between the Helvetic and North Penninic paleogeographic domains. The Adula nappe is principally composed of crystalline basement rocks. The investigation of the pre-Triassic basement shows that it contains several Palaeozoic detrital metasedimentary formations dated from the Cambrian to the Ordovician. These formations contain also some volcanic or intrusive magmatic rocks. Ordovician metagranites dated at ~450 Ma are also a common rock-type of the Adula basement. These formations underwent Alpine and Variscan deformation and metamorphism. Permian granites (Zervreila orthogneiss, dated at ~290 Ma) have intruded this pre-structured basement in a post-orogenic geodynamic context. Due to their age, the Zervreila orthogneiss are good markers for alpine deformation. The stratigraphy of the Mesozoic and Paleogene sedimentary cover of the Adula nappe is essential to unraveling its pre- orogenic history. The autochthonous cover is assigned to a North Penninic Triassic series that testifies for a transition between the Helvetic and Briançonnais Triassic domains. The Adula domain goes through an emersion during the Middle Jurassic, and is part of a topographic high during the first phase of the Alpine rift. The sediments of the late Middle Jurassic show a drowning phase associated with a tectonic activity and a breccia formation. In the neighbouring domains, coeval with the drowning phase in the Adula domain, a strong extensional crustal delamination and a scattered magmatic activity is associated with the main opening of the North Penninic domain. The Upper Jurassic of the Adula nappe is characterized by a carbonate formation comparable with those in the Helvetic or Subbriaçonnais domains. Flysch s.l. deposition starts probably at the end of the Cretaceous. These sediments are deposited on a large unconformity testifying for a Cretaceous sedimentary gap. The Adula nappe exhibits a very complex structure. This structure is formed by several deformation phases. Two ductile deformations are responsible for the nappe emplacement. The first deformation phase is associated with a folding compatible with a top-to-south movement at the top of the nappe. The second phase is dominant and pervasive throughout the whole nappe. It goes with a strong north vergent folding and the main nappe emplacement. These two phases cause the exhumation and emplacement of a coherent, although pre-structured, piece of continental crust. Two further deformation phases postdate the nappe emplacement. - Ce travail concerne l'étude géologique de la partie nord de la nappe de l'Adula dans les Alpes centrales. La nappe de l'Adula est l'une des nappes cristallines la plus élevée dans la pile des nappes du Pennique inférieur des Alpes lepontines. Cette position particulière permet d'étudier la transition entre les nappes des domaines helvétique et pennique inférieur. La nappe de l'Adula est principalement composée de socle cristallin : l'étude de l'histoire géologique du socle est donc l'un des thèmes de cette recherche. Ce socle contient plusieurs formations métasédimentaires paléozoïques du Cambrien à I'Ordovicien. Ces métasédiments sont issus de formations clastiques comprenant souvent des roches magmatiques volcaniques et intrusives. Ces métasédiments ont subi les cycles orogéniques varisque et alpin. La nappe de l'Adula contient plusieurs corps magmatiques granitiques métamorphisés. Les premiers métagranites sont Ordovicien et témoignent d'un environnement de marge active. Ces granites sont aussi polymétamorphiques. Les deuxièmes métagranites sont représentés par les orthogneiss de type Zervreila. Ce métagranite est d'âge permien (-290 Ma). Il est mis en place dans un contexte tectonique post-orogénique. Ce granite est un maqueur de la déformation alpine car il n'est pas affecté par les orogenèses précédentes, flippy Le contenu stratigraphique des roches mésozoïques et cénozoiques de la couverture sédimentaire de la nappe de l'Adula est'important pour en étudier son histoire pré-alpine. La couverture autochtone est composée d'une série d'âge triasique d'affinité nord-pennique, un faciès qui marque la transition entre les domaines helvétiques et briançonnais au Trias. Le domaine paléogéographique représenté dans la nappe de l'Adula connaît une émersion pendant le Jurassique moyen. Cette émersion marque le commencement du rift dans le domaine alpin. La sédimentation de la fin du Jurassique moyen est marquée par une transgression marine accompagnée par des mouvements tectoniques et la formation d'une brèche. Cette transgression est contemporaine des importants mouvements tectoniques et des manifestations magmatiques dans les unités voisines qui marquent la phase principale d'ouverture du bassin nord-pennique. Le Jurassique supérieur est caractérisé par l'instauration d'une sédimentation carbonatée comparable à celle du domaine helvétique ou subbriançonnais. Une sédimentation flyschoïde, probablement du Crétacé à Tertiaire, est déposée sur une importante discordance qui témoigne d'une lacune au Crétacé. La structure complexe de la nappe de l'Adula témoigne de nombreuses phases de déformation. Ces phases de déformation sont en partie issues de la mise en place de la nappe et de déformations plus tardives. La mise en place de la nappe produit deux phases de déformation ductile : la première produit un plissement compatible avec un cisaillement top-vers-le sud dans la partie supérieure de la nappe; la deuxième produit un intense plissement qui accompagne la mise en place de la nappe vers le nord. Ces deux phases de déformation témoignent d'un mécanisme d'exhumation par déformation ductile d'un bloc cohérent.
Resumo:
In this paper we present new data on the spatial variability of peridotite composition across a kilometer-scale mantle shear zone within the Lanzo massif (Western Alps, Italy). The shear zone separates the central from the northern part of the massif. Plagioclase peridotite shows gradually increasing deformation towards the shear zone, from porphyroclastic to mylonitic textures in the central body, while the northern body is composed of porphyroclastic rocks. The peridotite displays a large range of compositions, from fertile peridotite to refractory harzburgite and dunite. Deformed peridotites (proto-mylonite and mylonites) tend to be compositionally more homogeneous and fertile than weakly deformed peridotites. The composition of most plagioclase peridotites show rather high and constant (Ce/Yb) (N) ratios, and Yb (N) that cannot be explained by any simple melting model. Instead, refertilization modeling, consisting of melt increments from spinel peridotite sources, particularly with E-MORB melt, reasonably reproduces the plagioclase peridotite whole rock composition. Combined with constraints from Ce-Nb and Ce-Th systematics, we speculate that peridotites such as those from Lanzo record pervasive refertilization processes in the thermal boundary layer. In this scenario, mantle shear zones might act as important areas of melt focusing in the upper mantle that separates the thermal boundary layer from the conductively cooled mantle.
Resumo:
Introduction: Mantle cell lymphoma (MCL) accounts for 6% of all B-cell lymphomas and remains incurable for most patients. Those who relapse after first line therapy or hematopoietic stem cell transplantation have a dismal prognosis with short response duration after salvage therapy. On a molecular level, MCL is characterised by the translocation t[11;14] leading to Cyclin D1 overexpression. Cyclin D1 is downstream of the mammalian target of rapamycin (mTOR) kinase and can be effectively blocked by mTOR inhibitors such as temsirolimus. We set out to define the single agent activity of the orally available mTOR inhibitor everolimus (RAD001) in a prospective, multi-centre trial in patients with relapsed or refractory MCL (NCT00516412). The study was performed in collaboration with the EU-MCL network. Methods: Eligible patients with histologically/cytologically confirmed relapsed (not more than 3 prior lines of systemic treatment) or refractory MCL received everolimus 10 mg orally daily on day 1 - 28 of each cycle (4 weeks) for 6 cycles or until disease progression. The primary endpoint was the best objective response with adverse reactions, time to progression (TTP), time to treatment failure, response duration and molecular response as secondary endpoints. A response rate of ≤ 10% was considered uninteresting and, conversely, promising if ≥ 30%. The required sample size was 35 pts using the Simon's optimal two-stage design with 90% power and 5% significance. Results: A total of 36 patients with 35 evaluable patients from 19 centers were enrolled between August 2007 and January 2010. The median age was 69.4 years (range 40.1 to 84.9 years), with 22 males and 13 females. Thirty patients presented with relapsed and 5 with refractory MCL with a median of two prior therapies. Treatment was generally well tolerated with anemia (11%), thrombocytopenia (11%), neutropenia (8%), diarrhea (3%) and fatigue (3%) being the most frequent complications of CTC grade III or higher. Eighteen patients received 6 or more cycles of everolimus treatment. The objective response rate was 20% (95% CI: 8-37%) with 2 CR, 5 PR, 17 SD, and 11 PD. At a median follow-up of 6 months, TTP was 5.45 months (95% CI: 2.8-8.2 months) for the entire population and 10.6 months for the 18 patients receiving 6 or more cycles of treatment. Conclusion: This study demonstrates that single agent everolimus 10 mg once daily orally is well tolerated. The null hypothesis of inactivity could be rejected indicating a moderate anti-lymphoma activity in relapsed/refractory MCL. Further studies of either everolimus in combination with chemotherapy or as single agent for maintenance treatment are warranted in MCL.
Resumo:
Introduction: Mantle cell lymphoma (MCL) accounts for 6% of all B-cell lymphomas and is in most cases an incurable disease. It is characterized by the translocation t(11;14) leading to Cyclin D1 over-expression. Cyclin D1 is downstream of the mammalian target of rapamycin (mTOR) threonine kinase and can be effectively blocked by mTOR inhibitors. We set out to define the single agent activity of the orally available mTOR inhibitor everolimus in a prospective, multicentre trial in patients with relapsed or refractory MCL (NCT00516412).Methods: Eligible patients with confirmed relapsed or refractory MCL received everolimus 10 mg for 28 days (one cycle) for a total of 6 cycles or until disease progression. The primary endpoint was the best objective response (OR) with adverse reactions, time to progression (TTP), time to treatment failure, response duration and molecular response as secondary endpoints.Results: A total of 36 patients with 35 evaluable patients at a median age of 69 years (range 40 to 85 years) from 19 centers were enrolled between August 2007 and January 2010. Treatment was generally well tolerated with anemia (11%), thrombocytopenia (11%), neutropenia (8%), diarrhea (3%) and fatigue (3%) being the most frequent complications of CTC grade 3 or higher. The OR rate was 20% (95% CI: 8-37%) with 2 complete remissions (CR) and 5 partial response (PR), stable disease (SD) 48% and progression disease (PD) 28%. At a median follow-up of 6 months, TTP was 5.45 months (95% CI: 2.8-8.2 months) for the entire population and 10.6 months for the 18 patients receiving 6 or more cycles of treatment. Three patients achieved a lasting complete molecular response when assessed in the peripheral blood.Conclusion: This study demonstrates that single agent everolimus is well tolerated and has anti-lymphoma activity including lasting molecular responses. Further studies of everolimus either in combination with chemotherapy or as single agent for maintenance treatment are warranted in MCL.
Resumo:
The Western Cordillera of Ecuador consists of Cretaceous crustal fragments of oceanic plateaux and superimposed insular arcs, which were accreted to the northwestern South American margin during the Late Cretaceous and Paleocene. Slices of high-grade metabasites, ultramafic rocks, gabbros and basalts, unmetamorphosed radiolarian cherts and scarce garnet-bearing metasediments were randomly exhumed along Miocene to Recent transcurrent faults crosscutting the Western Cordillera. The basalts show geochemical characteristics of oceanic plateau basalts (flat REE patterns, La/Nb = 0.85). The gabbros differ from the basalts in having lower REE levels, positive Eu anomalies, and negative Nb and Ta anomalies; they are interpreted as resulting from arc magmatism. The amphibolites and banded amphibolites have major and trace element chemistry similar to that of oceanic plateau basalts (flat REE patterns, La/Nb = 0.86) or to cumulate gabbros. The granulite shares with oceanic plateaus similar trace element chemistry (flat REE patterns, La/Nb < 1) and epsilon(Ndi) values (+7.6). Continent-derived metasediments are depleted in heavy REE (La/Y = 4.8) and have a negative Eu anomaly. Foliated Iherzolites, melagabbronorites and pyroxenites consist of serpentinized olivine + cpx + opx +/- Ca-plagioclase. Lherzolites, melagabbronorites and pyroxenites are LREE depleted with positive Eu anomalies, while the harzburgite displays a U-shaped REE pattern. The trace element abundances of the ultramafic rocks are very low (0.1 to 1 times the chonctritic and primitive mantle values). The ultramafic rocks represent fragments of depleted mantle, deformed cpx-rich cumulate, and continental lithospheric mantle or mantle contaminated by subduction-fluid. Except the scarce quartz-rich metasediments, all these rocks likely represent remnants of accreted oceanic crustal fragments and associated depleted mantle. Since these samples were randomly sampled at depth by the fault, we propose that the Western Cordillera and its crustal root are mainly of oceanic nature.
Resumo:
BACKGROUND: Mantle cell lymphoma is a clinically heterogeneous disease characterized by overexpression of cyclin D1 protein. Blastoid morphology, high proliferation, and secondary genetic aberrations are markers of aggressive behavior. Expression profiling of mantle cell lymphoma revealed that predominance of the 3'UTR-deficient, short cyclin D1 mRNA isoform was associated with high cyclin D1 levels, a high "proliferation signature" and poor prognosis. DESIGN AND METHODS: Sixty-two cases of mantle cell lymphoma were analyzed for cyclin D1 mRNA isoforms and total cyclin D1 levels by real-time reverse transcriptase polymerase chain reaction, and TP53 alterations were assessed by immunohistochemistry and molecular analysis. Results were correlated with proliferation index and clinical outcome. RESULTS: Predominance of the short cyclin D1 mRNA was found in 14 (23%) samples, including four with complete loss of the standard transcript. TP53 alterations were found in 15 (24%) cases. Predominance of 3'UTR-deficient mRNA was significantly associated with high cyclin D1 mRNA levels (P=0.009) and more commonly found in blastoid mantle cell lymphoma (5/11, P=0.060) and cases with a proliferation index of >20% (P=0.026). Both blastoid morphology (11/11, P<0.001) and TP53 alterations (15/15, P<0.001) were significantly correlated with a high proliferation index. A proliferation index of 10% was determined to be a significant threshold for survival in multivariate analysis (P=0.01). CONCLUSIONS: TP53 alterations are strongly associated with a high proliferation index and aggressive behavior in mantle cell lymphoma. Predominance of the 3'UTR-deficient transcript correlates with higher cyclin D1 levels and may be a secondary contributing factor to high proliferation, but failed to reach prognostic significance in this study.
Resumo:
BACKGROUND: Mantle cell lymphoma accounts for 6% of all B-cell lymphomas and is generally incurable. It is characterized by the translocation t(11;14) leading to cyclin D1 over-expression. Cyclin D1 is downstream of the mammalian target of rapamycin threonine kinase and can be effectively blocked by mammalian target of rapamycin inhibitors. We set out to examine the single agent activity of the orally available mammalian target of rapamycin inhibitor everolimus in a prospective, multicenter trial in patients with relapsed or refractory mantle cell lymphoma (NCT00516412). DESIGN AND METHODS: Eligible patients who had received a maximum of three prior lines of chemotherapy were given everolimus 10 mg for 28 days (one cycle) for a total of six cycles or until disease progression. The primary endpoint was the best objective response. Adverse reactions, progression-free survival and molecular response were secondary endpoints. RESULTS: Thirty-six patients (35 evaluable) were enrolled and treatment was generally well tolerated with Common Terminology Criteria grade ≥ 3 adverse events (>5%) including anemia (11%), thrombocytopenia (11%) and neutropenia (8%). The overall response rate was 20% (95% CI: 8-37%) with two complete remissions and five partial responses; 49% of the patients had stable disease. At a median follow-up of 6 months, the median progression-free survival was 5.5 months (95% CI: 2.8-8.2) overall and 17.0 (6.4-23.3) months for 18 patients who received six or more cycles of treatment. Three patients achieved a lasting complete molecular response, as assessed by polymerase chain reaction analysis of peripheral blood. CONCLUSIONS: Everolimus as a single agent is well tolerated and has anti-lymphoma activity in relapsed or refractory mantle cell lymphoma. Further studies of everolimus in combination with chemotherapy or as a single agent for maintenance treatment are warranted.
Resumo:
The discovery of exhumed continental mantle and hyper-extended crust in present-day magma-poor rifted margins is at the origin of a paradigm shift within the research field of deep-water rifted margins. It opened new questions about the strain history of rifted margins and the nature and composition of sedimentary, crustal and mantle rocks in rifted margins. Thanks to the benefit of more than one century of work in the Alps and access to world-class outcrops preserving the primary relationships between sediments and crustal and mantle rocks from the fossil Alpine Tethys margins, it is possible to link the subsidence history and syn-rift sedimentary evolution with the strain distribution observed in the crust and mantle rocks exposed in the distal rifted margins. In this paper, we will focus on the transition from early to late rifting that is associated with considerable crustal thinning and a reorganization of the rift system. Crustal thinning is at the origin of a major change in the style of deformation from high-angle to low-angle normal faulting which controls basin-architecture, sedimentary sources and processes and the nature of basement rocks exhumed along the detachment faults in the distal margin. Stratigraphic and isotopic ages indicate that this major change occurred in late Sinemurian time, involving a shift of the syn-rift sedimentation toward the distal domain associated with a major reorganization of the crustal structure with exhumation of lower and middle crust. These changes may be triggered by mantle processes, as indicated by the infiltration of MOR-type magmas in the lithospheric mantle, and the uplift of the Brianconnais domain. Thinning and exhumation of the crust and lithosphere also resulted in the creation of new paleogeographic domains, the Proto Valais and Liguria-Piemonte domains. These basins show a complex, 3D temporal and spatial evolution that might have evolved, at least in the case of the Liguria-Piemonte basin, in the formation of an embryonic oceanic crust. The re-interpretation of the rift evolution and the architecture of the distal rifted margins in the Alps have important implications for the understanding of rifted margins worldwide, but also for the paleogeographic reconstruction of the Alpine domain and its subsequent Alpine compressional overprint.
Resumo:
Melt-rock reaction in the upper mantle is recorded in a variety of ultramafic rocks and is an important process in modifying melt composition on its way from the source region towards the surface. This experimental study evaluates the compositional variability of tholeiitic basalts upon reaction with depleted peridotite at uppermost-mantle conditions. Infiltration-reaction processes are simulated by employing a three-layered set-up: primitive basaltic powder ('melt layer') is overlain by a 'peridotite layer' and a layer of vitreous carbon spheres ('melt trap'). Melt from the melt layer is forced to move through the peridotite layer into the melt trap. Experiments were conducted at 0.65 and 0.8 GPa in the temperature range 1,170-1,290 degrees C. In this P-T range, representing conditions encountered in the transition zone (thermal boundary layer) between the asthenosphere and the lithosphere underneath oceanic spreading centres, the melt is subjected to fractionation, and the peridotite is partially melting (T (s) similar to 1,260 degrees C). The effect of reaction between melt and peridotite on the melt composition was investigated across each experimental charge. Quenched melts in the peridotite layers display larger compositional variations than melt layer glasses. A difference between glasses in the melt and peridotite layer becomes more important at decreasing temperature through a combination of enrichment in incompatible elements in the melt layer and less efficient diffusive equilibration in the melt phase. At 1,290A degrees C, preferential dissolution of pyroxenes enriches the melt in silica and dilutes it in incompatible elements. Moreover, liquids become increasingly enriched in Cr(2)O(3) at higher temperatures due to the dissolution of spinel. Silica contents of liquids decrease at 1,260 degrees C, whereas incompatible elements start to concentrate in the melt due to increasing levels of crystallization. At the lowest temperatures investigated, increasing alkali contents cause silica to increase as a consequence of reactive fractionation. Pervasive percolation of tholeiitic basalt through an upper-mantle thermal boundary layer can thus impose a high-Si 'low-pressure' signature on MORB. This could explain opx + plag enrichment in shallow plagioclase peridotites and prolonged formation of olivine gabbros.