4 resultados para Evaporites

em Université de Lausanne, Switzerland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samoborska Gora Mts. is situated within the westernmost part of the Zagorje-Mid-Transdanubian zone of the Internal Dinarides. The Samoborska Gora Mts. predominantly consists of Permian unmetamorphosed siliciclastic sediments and evaporites, overlain by Lower Triassic sediments. Rude mineralisation is hosted by Permian siliciclastic sediments, below gypsum and anhydrite strata. The central part of the deposit consists of a 1.5 km long stratabound mineralisation, grading laterally into ferruginous sandstone and protruding vertically into a gypsum-anhydrite layer. Siderite-polysulphide-barite-quartz veins are located below the stratabound mineralisation. The stratiform part of the deposit is situated above the stratabound and consists of haematite layer with barite concretions and veinlets. Late stage galena-barite veins overprint earlier types of mineralisation. The Rude ore deposit was generated by predominantly NaCl +/- CaCl(2)-H(2)O solutions. Detrital quartz from stratiform mineralisation contains fluid inclusions with salinities between 7 and 11 wt. % NaCl equ., homogenizing between 150 degrees C to 230 degrees C. Stratabound/siderite-polysulphide-barite-quartz vein type mineralisation was derived from solutions with salinities between 5 and 19 wt. % NaCl equ., homogenizing between 60 degrees C and 160 degrees C, while late stage galenabarite veins were precipitated from solutions with salinities between 11 and 16 wt. % NaCl equ., homogenizing between 100 degrees C to 140 degrees C. Fluid inclusion bulk leachate chemistry recorded Na(+)> Mg(2+)>K(+)>Ca(2+)>Li(+) and Cl-> SO(4)(2-) ions. Sulphur isotope composition of barites and overlying gypsum stems from Permian seawater sulphate, supported by increased Br(-) content, which follows successively the seawater evaporation line. The sulphur isotopic composition of sulphides varies between -0.2 and + 12.5 parts per thousand , as a result of thermal reduction of Permian marine sulphate. Ore-forming fluids were produced by hydrothermal convective cells (reflux brine model), and were derived primarily from Permian seawater, modified by evaporation and interaction with Permian sedimentary rocks. Rude deposits in Samoborska Gora Mts. may be declared as a prototype of the Permian siderite-polysulphide-barite deposits (products of rifting along the passive Gondwana margin), in the Inner Dinarides, and their equivalents extending northeastward into the Zagorje-Mid-Transdanubian Zone and the Gemerides, and southeastward to the Hellenide-Albanides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abundant veins filled by calcite, celestite and pyrite were found in the core of a 719 m deep borehole drilled in Oftringen near Olten, located in the north-western Molasse basin, close to the thrust of the Folded Jura. Host rocks are calcareous marl, argillaceous limestone and limestone of the Dogger and Malm. The delta O-18 values of vein calcite are lower than in host rock carbonate and, together with microthermometric data from fluid inclusions in vein calcite, indicate precipitation from a seawater-dominated fluid at average temperatures of 56-68A degrees C. Such temperatures were reached at the time of maximum burial of the sedimentary pile in the late Miocene. The depth profile of delta C-13 and Sr-87/Sr-86 values and Sr content of both whole-rock carbonate and vein calcite show marked trends towards negative delta C-13, high Sr-87/Sr-86, and low Sr content in the uppermost 50-150 m of the Jurassic profile (upper Oxfordian). The Sr-87/Sr-86 of vein minerals is generally higher than that of host rock carbonate, up to very high values corresponding to Burdigalian seawater (Upper Marine Molasse, Miocene), which represents the last marine incursion in the region. No evidence for internally derived radiogenic Sr (clay minerals) has been found and so an external source is required. S and O isotope composition of vein celestite and pyrite can be explained by bacterial reduction of Miocene seawater sulphate. The available data set suggests the vein mineralization precipitated from descending Burdigalian seawater and not from a fluid originating in the underlying Triassic evaporites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ljubija siderite deposits, hosted by a Carboniferous sedimentary complex within the Inner Dinarides, occur as stratabound replacement-type ore bodies in limestone blocks and as siderite-sulfides veins in shale. Three principal types of ore textures have been recognized including massive dark siderite and ankerite, siderite with zebra texture, and siderite veins. The ore and host rocks have been investigated by a combination of inorganic (major, trace, and rare earth element concentrations), organic (characterization of hydrocarbons including biomarkers), and stable isotope geochemical methods (isotope ratios of carbonates, sulfides, sulfates, kerogen, and individual hydrocarbons). New results indicate a marine origin of the host carbonates and a hydrothermal-metasomatic origin of the Fe mineralization. The differences in ore textures (e.g., massive siderite, zebra siderite) are attributed to physicochemical variations (e.g., changes in acidity, temperature, and/or salinity) of the mineralizing fluids and to the succession and intensity of replacement of host limestone. Vein siderite was formed by precipitation from hydrothermal fluids in the late stage of mineralization. The equilibrium fractionation of stable isotopes reveals higher formation temperatures for zebra siderites (around 245A degrees C) then for siderite vein (around 185A degrees C). Sulfur isotope ratios suggest Permian seawater or Permian evaporites as the main sulfur source. Fluid inclusion composition confirms a contribution of the Permian seawater to the mineralizing fluids and accord with a Permian mineralization age. Organic geochemistry data reflect mixing of hydrocarbons at the ore site and support the hydrothermal-metasomatic origin of the Ljubija iron deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Jalta and Jebel Ghozlane ore deposits are located in the extreme North of Tunisia, within the Nappe zone. The mineralization of Jalta, hosted in Triassic dolostones and the overlying Mio-Pliocene conglomerates, consists of abundant galena, barite, and cerussite with accessory sphalerite, pyrite, and jordanite. At Jebel Ghozlane, large Pb-Zn concentrations occur in the Triassic dolostones and Eocene limestones. The mineral association consists of galena, sphalerite, barite, and celestite and their oxidation products (cerussite, smithsonite, and anglesite). Lead isotope ratios in galena from both districts are relatively homogeneous ((206)Pb/(204)Pb = 18.702-18.823, (207)Pb/(204)Pb = 15.665-15.677, (208)Pb/(204)Pb = 38.725-38.875). The delta(34)S values for sulfates from both areas (+12.2 to +16.2 parts per thousand at Jalta and + 14.3 to + 19.4 parts per thousand at Jebel Ghozlane) are compatible with a derivation of sulfur from marine sulfates, possibly sourced from the Triassic evaporites. The delta(34)S values of the sulfides have a range between -10 and +12.5 parts per thousand at Jalta, and between -9.1 and +22.1 parts per thousand at Jebel Ghozlane. The large range of values suggests reduction of the sulfate by bacterial and/or thermochemical reduction of sulfate to sulfur. The high delta(34)S values of sulfides require closed-system reduction processes. The isotopically light carbon in late calcites (-6.3 to -2.5 parts per thousand) and authigenic dolomite (-17.6 parts per thousand) suggests an organic source of at least some of the carbon in these samples, whereas the similarity of the delta(18)O values between calcite (+24.8 parts per thousand) and the authigenic dolomite (+24.7 parts per thousand) of Jalta and their respective host rocks reflects oxygen isotope buffering of the mineralizing fluids by the host rock carbonates. The secondary calcite isotope compositions of Jalta are compatible with a hydrothermal fluid circulation at approximately 100 to 200 degrees C, but temperatures as low as 50 degrees C may be indicated by the late calcite of Jebel Ghozlane (delta(18)O of +35.9 parts per thousand). Given the geological events related to the Alpine orogeny in the Nappe zone (nappe emplacement, bimodal volcanism, and reactivation of major faults, such as Ghardimaou-Cap Serrat) and the Neogene age of the host rocks in several localities, a Late-Miocene age is proposed for the Pb-Zn ore deposits considered in this study. Remobilization of deep-seated primary deposits in the Paleozoic sequence is the most probable source for metals in both localities considered in this study and probably in the Nappe zone as a whole. (C) 2011 Elsevier B.V. All rights reserved.