41 resultados para Ethyl xanthate

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Ethylglucuronide (EtG) is a direct and specific metabolite of ethanol. Its determination in hair is of increasing interest for detecting and monitoring alcohol abuse. The quantification of EtG in hair requires analytical methods showing highest sensitivity and specificity. We present a fully validated method based on gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS). The method was validated using French Society of Pharmaceutical Sciences and Techniques (SFSTP) guidelines which are based on the determination of the total measurement error and accuracy profiles. Methods: Washed and powdered hair is extracted in water using an ultrasonic incubation. After purification by Oasis MAX solid phase extraction, the derivatized EtG is detected and quantified by GC-NCI-MS/MS method in the selected reaction monitoring mode. The transitions m/z 347 / 163 and m/z 347 / 119 were used for the quantification and identification of EtG. Four quality controls (QC) prepared with hair samples taken post mortem from 2 subjects with a known history of alcoholism were used. A proficiency test with 7 participating laboratories was first run to validate the EtG concentration of each QC sample. Considering the results of this test, these samples were then used as internal controls for validation of the method. Results: The mean EtG concentrations measured in the 4 QC were 259.4, 130.4, 40.8, and 8.4 pg/mg hair. Method validation has shown linearity between 8.4 and 259.4 pg/mg hair (r2 > 0.999). The lower limit of quantification was set up at 8.4 pg/mg. Repeatability and intermediate precision were found less than 13.2% for all concentrations tested. Conclusion: The method proved to be suitable for routine analysis of EtG in hair. GC-NCI-MS/MS method was then successfully applied to the analysis of EtG in hair samples collected from different alcohol consumers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The specificity of ethyl glucuronide (EtG) in hair as marker of alcohol consumption exceeds by far those of fatty acid ethyl esters. False positive cases are therefore very rare but not excluded as recent publications have shown. Especially, the use of plant extracts containing high percentages of ethanol can lead to EtG hair concentrations typically found in cases of chronic alcohol consumption. As proposed by Baumgartner et al., a nucleohilic substitution could most likely explain this phenomenon. Fresh and dried plants as well as commercial hair lotions based on plants extracts have been analysed for EtG presence or EtG formation. Methods: Urtica dioica, Plantago lanceolata, Cortex Quercus, Sempervivum, Armoracia rusticana, Juniperus communis, Brassica alba, Thymian vulgaris, Salvia officinalis, Majorana hortensis, Aloe vera, birch gingko and green tea leafs, ginger, lemon grass were extracted in water, water/ethanol (50/50) and ethanol (100%). The extracts as well as diluted hair lotions were measured by immunological test (Microgenics DRI® EtG assay) and by LC-MS/MS on Shimadzu Nexera UHPLC coupled with an AB Sciex 4500 QTrap. Results: EtG could not be detected in water extracts of all tested plants. However, DRI® EtG assay indicated the presence of EtG in 66% of the tested ethanolic plant extracts. That could only be confirmed by mass spectrometry in the cases of fresh thyme as well as in dried birch, oak and plantain extracts where EtG concentrations between of 0.25 and 2,09 mg/l were measured. In one hair lotion, the EtG concentration was 0,76 mg/l. Conclusion: Ethanolic plant extracts represents a non-negligible risk for false positive EtG hair tests, especially when applied as lotion without following washing out. The use of hair care products must therefore be evaluated at every hair sampling. In case of doubt, the product should be analysed by mass spectrometric methods since the presence of EtG can't be proven by use of the DRI® EtG assay, only. Our results support Baumgartner's assumption of a nucleophilic substitution in presence of ethanol because EtG was only measured in the ethanolic extracts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethyl glucuronide (EtG) is a minor and specific metabolite of ethanol. It is incorporated into growing hair, allowing a retrospective detection of alcohol consumption. However, the suitability of quantitative EtG measurements in hair to determine the quantity of alcohol consumed has not clearly been demonstrated yet. The purpose of this study was to evaluate the influence of ethanol dose and hair pigmentation on the incorporation of EtG into rat hair. Ethanol and EtG kinetics in blood were investigated after a single administration of ethanol. Eighteen rats were divided into four groups receiving 0 (control group), 1, 2, or 3g ethanol/kg body weight. Ethanol was administered on 4 consecutive days per week for 3 weeks by intragastric route. Twenty-eight days after the initial ethanol administration, newly grown hair was shaved. Pigmented and nonpigmented hair were analyzed separately by gas chromatography coupled to tandem mass spectrometry. Blood samples were collected within 12h after the ethanol administration. EtG and ethanol blood levels were measured by liquid chromatography coupled to tandem mass spectrometry and headspace gas chromatography-flame ionization detector, respectively. No statistically significant difference was observed in EtG concentrations between pigmented and nonpigmented hair (Spearman's rho=0.95). Thus, EtG incorporation into rat hair was not affected by hair pigmentation. Higher doses of ethanol resulted in greater blood ethanol area under the curve of concentration versus time (AUC) and in greater blood EtG AUC. A positive correlation was found between blood ethanol AUC and blood EtG AUC (Spearman's rho=0.84). Increased ethanol administration was associated with an increased EtG concentration in hair. Blood ethanol AUC was correlated with EtG concentration in hair (Pearson's r=0.89). EtG concentration in rat hair appeared to reflect the EtG concentration in blood. Ethanol was metabolized at a median rate of 0.22 g/kg/h, and the median elimination half-life of EtG was 1.21 h. This study supports that the bloodstream is likely to display a major role in the hair EtG incorporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excessive alcohol consumption represents a major risk factor for morbidity and mortality. It is therefore indispensable to be able to detect at-risk drinking. Ethyl glucuronide (EtG) is a specific marker of alcohol consumption. The determination of ethyl glucuronide in urine or blood can be used to prove recent driving under the influence of alcohol, even if ethanol is no longer detectable. The commercialization of an EtG specific immunological assay now allows to obtain preliminary results rapidly and easily with satisfying sensitivity. Moreover, the detection of ethyl glucuronide in hair offers the opportunity to evaluate an alcohol consumption over a long period. The EtG concentration in hair is in correlation with the amount of ingested alcohol. Thus, the analysis of ethyl glucuronide can be used to monitor abstinence, to detect alcohol relapse and to identify at-risk drinkers. However, a cut off allowing to detect chronic alcohol abuser reliably still does not exist. Therefore, it is recommended to perform the analysis of ethyl glucuronide in complement to the existing blood markers. A study financed by the Swiss Foundation for Alcohol Research is actually conducted by the West Switzerland University Center of Legal Medicine in order to establish an objective cut-off.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethyl glucuronide (EtG) is a minor and direct metabolite of ethanol. EtG is incorporated into the growing hair allowing retrospective investigation of chronic alcohol abuse. In this study, we report the development and the validation of a method using gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS) for the quantification of EtG in hair. EtG was extracted from about 30 mg of hair by aqueous incubation and purified by solid-phase extraction (SPE) using mixed mode extraction cartridges followed by derivation with perfluoropentanoic anhydride (PFPA). The analysis was performed in the selected reaction monitoring (SRM) mode using the transitions m/z 347-->163 (for the quantification) and m/z 347-->119 (for the identification) for EtG, and m/z 352-->163 for EtG-d(5) used as internal standard. For validation, we prepared quality controls (QC) using hair samples taken post mortem from 2 subjects with a known history of alcoholism. These samples were confirmed by a proficiency test with 7 participating laboratories. The assay linearity of EtG was confirmed over the range from 8.4 to 259.4 pg/mg hair, with a coefficient of determination (r(2)) above 0.999. The limit of detection (LOD) was estimated with 3.0 pg/mg. The lower limit of quantification (LLOQ) of the method was fixed at 8.4 pg/mg. Repeatability and intermediate precision (relative standard deviation, RSD%), tested at 4 QC levels, were less than 13.2%. The analytical method was applied to several hair samples obtained from autopsy cases with a history of alcoholism and/or lesions caused by alcohol. EtG concentrations in hair ranged from 60 to 820 pg/mg hair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A drinking experiment with participants suffering from Gilbert's syndrome was performed to study the possible influence of this glucuronidation disorder on the formation of ethyl glucuronide (EtG). Gilbert's syndrome is a rather common and, in most cases, asymptomatic congenital metabolic aberration with a prevalence of about 5 %. It is characterized by a reduction of the enzyme activity of the uridine diphosphate glucuronosyltransferase (UGT) isoform 1A1 up to 80 %. One of the glucuronidation products is EtG, which is formed in the organism following exposure to ethanol. EtG is used as a short-term marker for ethyl alcohol consumption to prove abstinence in various settings. After 2 days of abstinence from ethanol and giving a void urine sample, 30 study participants drank 0.1 L of sparkling wine (9 g ethanol). 3, 6, 12, and 24 h after drinking, urine samples were collected. 3 hours after drinking, an additional blood sample was taken, in which liver enzyme activities, ethanol, hematological parameters, and bilirubin were measured. EtG and ethyl sulfate (EtS), another short-term marker of ethanol consumption, were determined in the urine samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS); creatinine was measured photometrically. In all participants, EtG and EtS were detected in concentrations showing a wide range (EtG: 3 h sample 0.5-18.43 mg/L and 6 h sample 0.67-13.8 mg/L; EtS: 3 h sample 0.87-6.87 mg/L and 6 h sample 0.29-4.48 mg/L). No evidence of impaired EtG formation was found. Thus, EtG seems to be a suitable marker for ethanol consumption even in individuals with Gilbert's syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Na,K-ATPase is a major ion-motive ATPase of the P-type family responsible for many aspects of cellular homeostasis. To determine the structure of the pathway for cations across the transmembrane portion of the Na,K-ATPase, we mutated 24 residues of the fourth transmembrane segment into cysteine and studied their function and accessibility by exposure to the sulfhydryl reagent 2-aminoethyl-methanethiosulfonate. Accessibility was also examined after treatment with palytoxin, which transforms the Na,K-pump into a cation channel. Of the 24 tested cysteine mutants, seven had no or a much reduced transport function. In particular cysteine mutants of the highly conserved "PEG" motif had a strongly reduced activity. However, most of the non-functional mutants could still be transformed by palytoxin as well as all of the functional mutants. Accessibility, determined as a 2-aminoethyl-methanethiosulfonate-induced reduction of the transport activity or as inhibition of the membrane conductance after palytoxin treatment, was observed for the following positions: Phe(323), Ile(322), Gly(326), Ala(330), Pro(333), Glu(334), and Gly(335). In accordance with a structural model of the Na,K-ATPase obtained by homology modeling with the two published structures of sarcoplasmic and endoplasmic reticulum calcium ATPase (Protein Data Bank codes 1EUL and 1IWO), the results suggest the presence of a cation pathway along the side of the fourth transmembrane segment that faces the space between transmembrane segments 5 and 6. The phenylalanine residue in position 323 has a critical position at the outer mouth of the cation pathway. The residues thought to form the cation binding site II ((333)PEGL) are also part of the accessible wall of the cation pathway opened by palytoxin through the Na,K-pump.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main problems in combating tuberculosis is caused by a poor penetration of drugs into the mycobacterial cells. A prodrug approach via activation inside mycobacterial cells is a possible strategy to overcome this hurdle and achieve efficient drug uptake. Esters are attractive candidates for such a strategy and we and others communicated previously the activity of esters of weak organic acids against mycobacteria. However very little is known about ester hydrolysis by mycobacteria and no biological model is available to study the activation of prodrugs by these microorganisms. To begin filling this gap, we have embarked in a project to develop an in vitro method to study prodrug activation by mycobacteria using Mycobacterium smegmatis homogenates. Model ester substrates were ethyl nicotinate and ethyl benzoate whose hydrolysis was monitored and characterized kinetically. Our studies showed that in M. smegmatis most esterase activity is associated with the soluble fraction (cytosol) and is preserved by storage at 5°C or at room temperature for one hour, or by storage at -80°C up to one year. In the range of homogenate concentrations studied (5-80% in buffer), k(obs) varied linearly with homogenate concentration for both substrates. We also found that the homogenates showed Michaelis-Menten kinetics behavior with both prodrugs. Since ethyl benzoate is a good substrate for the mycobacterial esterases, this compound can be used to standardize the esterasic activity of homogenates, allowing results of incubations of prodrugs with homogenates from different batches to be readily compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phthalates are suspected to be endocrine disruptors. Di(2-ethylhexyl) phthalate (DEHP) is assumed to have low dermal absorption; however, previous in vitro skin permeation studies have shown large permeation differences. Our aims were to determine DEHP permeation parameters and assess extent of skin DEHP metabolism among workers highly exposed to these lipophilic, low volatile substances. Surgically removed skin from patients undergoing abdominoplasty was immediately dermatomed (800 μm) and mounted on flow-through diffusion cells (1.77 cm(2)) operating at 32°C with cell culture media (aqueous solution) as the reservoir liquid. The cells were dosed either with neat DEHP or emulsified in aqueous solution (166 μg/ml). Samples were analysed by HPLC-MS/MS. DEHP permeated human viable skin only as the metabolite MEHP (100%) after 8h of exposure. Human skin was able to further oxidize MEHP to 5-oxo-MEHP. Neat DEHP applied to the skin hardly permeated skin while the aqueous solution readily permeated skin measured in both cases as concentration of MEHP in the receptor liquid. DEHP pass through human skin, detected as MEHP only when emulsified in aqueous solution, and to a far lesser degree when applied neat to the skin. Using results from older in vitro skin permeation studies with non-viable skin may underestimate skin exposures. Our results are in overall agreement with newer phthalate skin permeation studies.