3 resultados para Esterase activity
em Université de Lausanne, Switzerland
Resumo:
A cytochemical marker such as alpha-naphthyl acetate esterase (ANAE) has been found useful for the morphological identification of the subset of T lymphocytes having receptors for Fcμ (TM cells). ANAE reaction on TM cells gives a typical pattern of one to four positive spots, whereas this pattern is not found on T cells with receptors for Fcγ (TG cells). ANAE is abundant in monocytes but not detectable in granulocytes. Herein another type of esterase activity, naphthol-AS-D chloroacetate esterase (NCAE), is described; it is known to be abundant in granulocytes and was found to give a specific pattern of reactivity with the subpopulation of large granular lymphocytes (LGL). This pattern of fine granular staining was observed not only on LGL present in the TG cell subpopulation but also in LGL present in the non-T, non-B cells. Fractions of peripheral blood mononuclear cells which were ènriched up to 80% in LGL by Percoll discontinuous density gradient gave a similar percentage of specific NCAE pattern. In addition, among the different fractions from Percoll gradient, there was a good correlation (r = 0.94) between the number of NCAE-positive cells and the natural killer activity against the natural killer susceptible K562 target cells. It will be important to determine whether or not this enzymatic activity plays a role in the cytotoxic activities of LGL.
Resumo:
One of the main problems in combating tuberculosis is caused by a poor penetration of drugs into the mycobacterial cells. A prodrug approach via activation inside mycobacterial cells is a possible strategy to overcome this hurdle and achieve efficient drug uptake. Esters are attractive candidates for such a strategy and we and others communicated previously the activity of esters of weak organic acids against mycobacteria. However very little is known about ester hydrolysis by mycobacteria and no biological model is available to study the activation of prodrugs by these microorganisms. To begin filling this gap, we have embarked in a project to develop an in vitro method to study prodrug activation by mycobacteria using Mycobacterium smegmatis homogenates. Model ester substrates were ethyl nicotinate and ethyl benzoate whose hydrolysis was monitored and characterized kinetically. Our studies showed that in M. smegmatis most esterase activity is associated with the soluble fraction (cytosol) and is preserved by storage at 5°C or at room temperature for one hour, or by storage at -80°C up to one year. In the range of homogenate concentrations studied (5-80% in buffer), k(obs) varied linearly with homogenate concentration for both substrates. We also found that the homogenates showed Michaelis-Menten kinetics behavior with both prodrugs. Since ethyl benzoate is a good substrate for the mycobacterial esterases, this compound can be used to standardize the esterasic activity of homogenates, allowing results of incubations of prodrugs with homogenates from different batches to be readily compared.
Resumo:
The objective of the EU funded integrated project "ACuteTox" is to develop a strategy in which general cytotoxicity, together with organ-specific endpoints and biokinetic features, are taken into consideration in the in vitro prediction of oral acute systemic toxicity. With regard to the nervous system, the effects of 23 reference chemicals were tested with approximately 50 endpoints, using a neuronal cell line, primary neuronal cell cultures, brain slices and aggregated brain cell cultures. Comparison of the in vitro neurotoxicity data with general cytotoxicity data generated in a non-neuronal cell line and with in vivo data such as acute human lethal blood concentration, revealed that GABA(A) receptor function, acetylcholine esterase activity, cell membrane potential, glucose uptake, total RNA expression and altered gene expression of NF-H, GFAP, MBP, HSP32 and caspase-3 were the best endpoints to use for further testing with 36 additional chemicals. The results of the second analysis showed that no single neuronal endpoint could give a perfect improvement in the in vitro-in vivo correlation, indicating that several specific endpoints need to be analysed and combined with biokinetic data to obtain the best correlation with in vivo acute toxicity.