166 resultados para Equivalent current dipole
em Université de Lausanne, Switzerland
Resumo:
Chronic low back pain attributed to lumbar disc degeneration poses a serious challenge to physicians. Surgery may be indicated in selected cases following failure of appropriate conservative treatment. For decades, the only surgical option has been spinal fusion, but its results have been inconsistent. Some prospective trials show superiority over usual conservative measures while others fail to demonstrate its advantages. In an effort to improve results of fusion and to decrease the incidence of adjacent segment degeneration, total disc replacement techniques have been introduced and studied extensively. Short-term results have shown superiority over some fusion techniques. Mid-term results however tend to show that this approach yields results equivalent to those of spinal fusion. Nucleus replacement has gained some popularity initially, but evidence on its efficacy is scarce. Dynamic stabilisation, a technique involving less rigid implants than in spinal fusion and performed without the need for bone grafting, represents another surgical option. Evidence again is lacking on its superiority over other surgical strategies and conservative measures. Insertion of interspinous devices posteriorly, aiming at redistributing loads and relieving pain, has been used as an adjunct to disc removal surgery for disc herniation. To date however, there is no clear evidence on their efficacy. Minimally invasive intradiscal thermocoagulation techniques have also been tried, but evidence of their effectiveness is questioned. Surgery using novel biological solutions may be the future of discogenic pain treatment. Collaboration between clinicians and basic scientists in this multidisciplinary field will undoubtedly shape the future of treating symptomatic disc degeneration.
Resumo:
Three standard radiation qualities (RQA 3, RQA 5 and RQA 9) and two screens, Kodak Lanex Regular and Insight Skeletal, were used to compare the imaging performance and dose requirements of the new Kodak Hyper Speed G and the current Kodak T-MAT G/RA medical x-ray films. The noise equivalent quanta (NEQ) and detective quantum efficiencies (DQE) of the four screen-film combinations were measured at three gross optical densities and compared with the characteristics for the Kodak CR 9000 system with GP (general purpose) and HR (high resolution) phosphor plates. The new Hyper Speed G film has double the intrinsic sensitivity of the T-MAT G/RA film and a higher contrast in the high optical density range for comparable exposure latitude. By providing both high sensitivity and high spatial resolution, the new film significantly improves the compromise between dose and image quality. As expected, the new film has a higher noise level and a lower signal-to-noise ratio than the standard film, although in the high frequency range this is compensated for by a better resolution, giving better DQE results--especially at high optical density. Both screen-film systems outperform the phosphor plates in terms of MTF and DQE for standard imaging conditions (Regular screen at RQA 5 and RQA 9 beam qualities). At low energy (RQA 3), the CR system has a comparable low-frequency DQE to screen-film systems when used with a fine screen at low and middle optical densities, and a superior low-frequency DQE at high optical density.
Resumo:
NlmCategory="UNASSIGNED">Video-assisted thoracoscopic surgery (VATS) is currently a routinely performed procedure for the management of early non small cell lung cancer. The oncological results of VATS in terms of local recurrence and overall survival are equivalent or superior to those of conventional thoracotomy with lower morbidity and hospital stay. In the field of pulmonary metastasectomy, current guidelines support a thoracotomy approach in order to properly palpate the lung and detect nodules too small to be identified on standard radiological examinations (typically less than 5mm in diameter). However, the oncological and clinical significance of these millimetric nodules is not known. This has led some thoracic surgeons to rethink the approach of solitary pulmonary metastasectomy: because of improvements in thin slice helical CT-scans, some support a VATS approach for solitary pulmonary nodules without formal bimanual palpation and suggest this allows equivalent oncological results and decreased surgical morbidity.
Resumo:
Biological materials are increasingly used in abdominal surgery for ventral, pelvic and perineal reconstructions, especially in contaminated fields. Future applications are multi-fold and include prevention and one-step closure of infected areas. This includes prevention of abdominal, parastomal and pelvic hernia, but could also include prevention of separation of multiple anastomoses, suture- or staple-lines. Further indications could be a containment of infected and/or inflammatory areas and protection of vital implants such as vascular grafts. Reinforcement patches of high-risk anastomoses or unresectable perforation sites are possibilities at least. Current applications are based mostly on case series and better data is urgently needed. Clinical benefits need to be assessed in prospective studies to provide reliable proof of efficacy with a sufficient follow-up. Only superior results compared with standard treatment will justify the higher costs of these materials. To date, the use of biological materials is not standard and applications should be limited to case-by-case decision.
Resumo:
Critically ill patients depend on artificial nutrition for the maintenance of their metabolic functions and lean body mass, as well as for limiting underfeeding-related complications. Current guidelines recommend enteral nutrition (EN), possibly within the first 48 hours, as the best way to provide the nutrients and prevent infections. EN may be difficult to realize or may be contraindicated in some patients, such as those presenting anatomic intestinal continuity problems or splanchnic ischemia. A series of contradictory trials regarding the best route and timing for feeding have left the medical community with great uncertainty regarding the place of parenteral nutrition (PN) in critically ill patients. Many of the deleterious effects attributed to PN result from inadequate indications, or from overfeeding. The latter is due firstly to the easier delivery of nutrients by PN compared with EN increasing the risk of overfeeding, and secondly to the use of approximate energy targets, generally based on predictive equations: these equations are static and inaccurate in about 70% of patients. Such high uncertainty about requirements compromises attempts at conducting nutrition trials without indirect calorimetry support because the results cannot be trusted; indeed, both underfeeding and overfeeding are equally deleterious. An individualized therapy is required. A pragmatic approach to feeding is proposed: at first to attempt EN whenever and as early as possible, then to use indirect calorimetry if available, and to monitor delivery and response to feeding, and finally to consider the option of combining EN with PN in case of insufficient EN from day 4 onwards.
Resumo:
Purpose: The aim of this educational poster is to introduce the technical principles of cerebral perfusion CT and to provide examples of its clinical applications and potential limitations in the everyday emergency practice. Methods and materials: Cerebral perfusion CT is a well established investigatory tool for many vascular and parenchymal brain dysfunctions. CT perfusion maps allow a semiquantitative assessment of cerebral perfusion. Results: Currently, cerebral perfusion CT has a pivotal role in differentiating reversible from irreversible ischemic parenchymal insult besides its integral role in grading vasospasm after subarachnoid hemorrhage. Furthermore, cerebral perfusion CT can be coupled to acetazolamide administration in order to assess the cerebrovascular reserve capacity before performing extra-/intra-cranial bypass surgery in patients with cerebral vascular insufficiency. Cerebral perfusion CT can also identify diffuse abnormalities of cerebral perfusion in children with traumatic brain injury showing a low initial GCS in order to predict the final outcome regarding the late occurrence of irreversible parenchymal damage. Cerebral Perfusion CT is also able to detect focal parenchymal perfusion abnormalities in acute epileptic seizures. Conclusion: Cerebral perfusion CT can be integrated in the management of many vascular, traumatic and functional disorders of the brain.
Resumo:
PURPOSE: To assess the sensitivity and false positive rate (FPR) of neurological examination and somatosensory evoked potentials (SSEPs) to predict poor outcome in adult patients treated with therapeutic hypothermia after cardiopulmonary resuscitation (CPR). METHODS: MEDLINE and EMBASE were searched for cohort studies describing the association of clinical neurological examination or SSEPs after return of spontaneous circulation with neurological outcome. Poor outcome was defined as severe disability, vegetative state and death. Sensitivity and FPR were determined. RESULTS: A total of 1,153 patients from ten studies were included. The FPR of a bilaterally absent cortical N20 response of the SSEP could be calculated from nine studies including 492 patients. The SSEP had an FPR of 0.007 (confidence interval, CI, 0.001-0.047) to predict poor outcome. The Glasgow coma score (GCS) motor response was assessed in 811 patients from nine studies. A GCS motor score of 1-2 at 72 h had a high FPR of 0.21 (CI 0.08-0.43). Corneal reflex and pupillary reactivity at 72 h after the arrest were available in 429 and 566 patients, respectively. Bilaterally absent corneal reflexes had an FPR of 0.02 (CI 0.002-0.13). Bilaterally absent pupillary reflexes had an FPR of 0.004 (CI 0.001-0.03). CONCLUSIONS: At 72 h after the arrest the motor response to painful stimuli and the corneal reflexes are not a reliable tool for the early prediction of poor outcome in patients treated with hypothermia. The reliability of the pupillary response to light and the SSEP is comparable to that in patients not treated with hypothermia.
Resumo:
RESUME Durant les dernières années, les méthodes électriques ont souvent été utilisées pour l'investigation des structures de subsurface. L'imagerie électrique (Electrical Resistivity Tomography, ERT) est une technique de prospection non-invasive et spatialement intégrée. La méthode ERT a subi des améliorations significatives avec le développement de nouveaux algorithmes d'inversion et le perfectionnement des techniques d'acquisition. La technologie multicanale et les ordinateurs de dernière génération permettent la collecte et le traitement de données en quelques heures. Les domaines d'application sont nombreux et divers: géologie et hydrogéologie, génie civil et géotechnique, archéologie et études environnementales. En particulier, les méthodes électriques sont souvent employées dans l'étude hydrologique de la zone vadose. Le but de ce travail est le développement d'un système de monitorage 3D automatique, non- invasif, fiable, peu coûteux, basé sur une technique multicanale et approprié pour suivre les variations de résistivité électrique dans le sous-sol lors d'événements pluvieux. En raison des limitations techniques et afin d'éviter toute perturbation physique dans la subsurface, ce dispositif de mesure emploie une installation non-conventionnelle, où toutes les électrodes de courant sont placées au bord de la zone d'étude. Le dispositif le plus approprié pour suivre les variations verticales et latérales de la résistivité électrique à partir d'une installation permanente a été choisi à l'aide de modélisations numériques. Les résultats démontrent que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle et plus apte à détecter les variations latérales et verticales de la résistivité électrique, et cela malgré la configuration non-conventionnelle des électrodes. Pour tester l'efficacité du système proposé, des données de terrain ont été collectées sur un site d'étude expérimental. La technique de monitorage utilisée permet de suivre le processus d'infiltration 3D pendant des événements pluvieux. Une bonne corrélation est observée entre les résultats de modélisation numérique et les données de terrain, confirmant par ailleurs que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle. La nouvelle technique de monitorage 3D de résistivité électrique permet de caractériser les zones d'écoulement préférentiel et de caractériser le rôle de la lithologie et de la pédologie de manière quantitative dans les processus hydrologiques responsables d'écoulement de crue. ABSTRACT During the last years, electrical methods were often used for the investigation of subsurface structures. Electrical resistivity tomography (ERT) has been reported to be a useful non-invasive and spatially integrative prospecting technique. The ERT method provides significant improvements, with the developments of new inversion algorithms, and the increasing efficiency of data collection techniques. Multichannel technology and powerful computers allow collecting and processing resistivity data within few hours. Application domains are numerous and varied: geology and hydrogeology, civil engineering and geotechnics, archaeology and environmental studies. In particular, electrical methods are commonly used in hydrological studies of the vadose zone. The aim of this study was to develop a multichannel, automatic, non-invasive, reliable and inexpensive 3D monitoring system designed to follow electrical resistivity variations in soil during rainfall. Because of technical limitations and in order to not disturb the subsurface, the proposed measurement device uses a non-conventional electrode set-up, where all the current electrodes are located near the edges of the survey grid. Using numerical modelling, the most appropriate arrays were selected to detect vertical and lateral variations of the electrical resistivity in the framework of a permanent surveying installation system. The results show that a pole-dipole array has a better resolution than a pole-pole array and can successfully follow vertical and lateral resistivity variations despite the non-conventional electrode configuration used. Field data are then collected at a test site to assess the efficiency of the proposed monitoring technique. The system allows following the 3D infiltration processes during a rainfall event. A good correlation between the results of numerical modelling and field data results can be observed since the field pole-dipole data give a better resolution image than the pole-pole data. The new device and technique makes it possible to better characterize the zones of preferential flow and to quantify the role of lithology and pedology in flood- generating hydrological processes.
Resumo:
Based on histology, the placentae of eutherians are currently grouped in epitheliochorial, endotheliochorial and haemochorial placentae. In a haeckelian sense, the epitheliochorial contact with marked histiotrophic feeding by uterine milk is generally considered as primitive, especially since similar contacts exist in Marsupials. In contrast, the more intimate endotheliochorial and haemochorial contact, facilitating haemotrophic nutrition, is interpreted as a derived state. A cladistic analysis based on the phylogenetic relationships established by molecular analyses reveals that the basic clades are all characterized by an endotheliochorial or haemochorial placenta, and that the epitheliochorial placenta evolved at least three times in a convergent manner. This evolution may be explained by the fact that the epitheliochorial placenta in eutherians is more efficient in nutritional transfer (flow rate by exchange surface). Moreover, this arrangement may confer an advantage to the mother who can probably reduce the degree of manipulation by a genetically imprinted embryo.
Resumo:
Energy metabolism measurements in spinal cord tumors, as well as in osseous spinal tumors/metastasis in vivo, are rarely performed only with molecular imaging (MI) by positron emission tomography (PET). This imaging modality developed from a small number of basic clinical science investigations followed by subsequent work that influenced and enhanced the research of others. Apart from precise anatomical localization by coregistration of morphological imaging and quantification, the most intriguing advantage of this imaging is the opportunity to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Most importantly, MI represents one of the key technologies in translational molecular neuroscience research, helping to develop experimental protocols that may later be applied to human patients. PET may help monitor a patient at the vertebral level after surgery and during adjuvant treatment for recurrent or progressive disease. Common clinical indications for MI of primary or secondary CNS spinal tumors are: (i) tumor diagnosis, (ii) identification of the metabolically active tumor compartments (differentiation of viable tumor tissue from necrosis) and (iii) prediction of treatment response by measurement of tumor perfusion or ischemia. While spinal PET has been used under specific circumstances, a question remains as to whether the magnitude of biochemical alterations observed by MI in CNS tumors in general (specifically spinal tumors) can reveal any prognostic value with respect to survival. MI may be able to better identify early disease and to differentiate benign from malignant lesions than more traditional methods. Moreover, an adequate identification of treatment effectiveness may influence patient management. MI probes could be developed to image the function of targets without disturbing them or as treatment to modify the target's function. MI therefore closes the gap between in vitro and in vivo integrative biology of disease. At the spinal level, MI may help to detect progression or recurrence of metastatic disease after surgical treatment. In cases of nonsurgical treatments such as chemo-, hormone- or radiotherapy, it may better assess biological efficiency than conventional imaging modalities coupled with blood tumor markers. In fact, PET provides a unique possibility to correlate topography and specific metabolic activity, but it requires additional clinical and experimental experience and research to find new indications for primary or secondary spinal tumors.
Resumo:
Patient's preference is for oral chemotherapy when both oral and i.v. are available, provided that efficacy is equivalent. Reliable switch from oral to i.v. is possible if correspondence between respective doses has been established. Vinorelbine oral was developed as a line extension of VRL i.v. on the basis that similar AUCs result in similar activities. From a first crossover study on 24 patients receiving VRL 25 mg/m2 i.v. and 80 mg/m2 oral data extrapolation concluded on AUCs bioequivalence between Vinorelbine 30 mg/m2 i.v. and 80 mg/m2 oral. A new trial was performed to support this calculation. In a crossover design study on patients (PS 0-1) with advanced solid tumours (44% breast carcinoma), VRL was administered (30 mg/m2 i.v., 80 mg/m2 oral) with a standard meal and 5-HT3 antagonists, at 2 weeks interval. Pharmacokinetics was performed over 168 h and VRL was measured by LC-MS/MS. Statistics included bioequivalence tests. Forty-eight patients were evaluable for PK: median age 58 years (25-71), PS0/PS1: 20/28, M/F: 11/37. Mean AUCs were 1,230 +/- 290 and 1,216 +/- 521 ng/ml for i.v. and oral, respectively. The confidence interval of the AUC ratio (0.83-1.03) was within the required regulatory range (0.8-1.25) and proved the bioequivalence between the two doses. The absolute bioavailability was 37.8 +/- 16.0%, and close to the value from the first study (40%). Patient tolerability was globally comparable between both forms with no significant difference on either haematological or non-haematological toxicities (grade 3-4). This new study, conducted on a larger population, confirmed the reliable dose correspondence previously established between vinorelbine 80 mg/m2 oral and 30 mg/m2 i.v.