29 resultados para Enterprise Java Open Source Architecture (EJOSA)

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit - a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Researchers working in the field of global connectivity analysis using diffusion magnetic resonance imaging (MRI) can count on a wide selection of software packages for processing their data, with methods ranging from the reconstruction of the local intra-voxel axonal structure to the estimation of the trajectories of the underlying fibre tracts. However, each package is generally task-specific and uses its own conventions and file formats. In this article we present the Connectome Mapper, a software pipeline aimed at helping researchers through the tedious process of organising, processing and analysing diffusion MRI data to perform global brain connectivity analyses. Our pipeline is written in Python and is freely available as open-source at www.cmtk.org.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The field of Connectomic research is growing rapidly, resulting from methodological advances in structural neuroimaging on many spatial scales. Especially progress in Diffusion MRI data acquisition and processing made available macroscopic structural connectivity maps in vivo through Connectome Mapping Pipelines (Hagmann et al, 2008) into so-called Connectomes (Hagmann 2005, Sporns et al, 2005). They exhibit both spatial and topological information that constrain functional imaging studies and are relevant in their interpretation. The need for a special-purpose software tool for both clinical researchers and neuroscientists to support investigations of such connectome data has grown. Methods: We developed the ConnectomeViewer, a powerful, extensible software tool for visualization and analysis in connectomic research. It uses the novel defined container-like Connectome File Format, specifying networks (GraphML), surfaces (Gifti), volumes (Nifti), track data (TrackVis) and metadata. Usage of Python as programming language allows it to by cross-platform and have access to a multitude of scientific libraries. Results: Using a flexible plugin architecture, it is possible to enhance functionality for specific purposes easily. Following features are already implemented: * Ready usage of libraries, e.g. for complex network analysis (NetworkX) and data plotting (Matplotlib). More brain connectivity measures will be implemented in a future release (Rubinov et al, 2009). * 3D View of networks with node positioning based on corresponding ROI surface patch. Other layouts possible. * Picking functionality to select nodes, select edges, get more node information (ConnectomeWiki), toggle surface representations * Interactive thresholding and modality selection of edge properties using filters * Arbitrary metadata can be stored for networks, thereby allowing e.g. group-based analysis or meta-analysis. * Python Shell for scripting. Application data is exposed and can be modified or used for further post-processing. * Visualization pipelines using filters and modules can be composed with Mayavi (Ramachandran et al, 2008). * Interface to TrackVis to visualize track data. Selected nodes are converted to ROIs for fiber filtering The Connectome Mapping Pipeline (Hagmann et al, 2008) processed 20 healthy subjects into an average Connectome dataset. The Figures show the ConnectomeViewer user interface using this dataset. Connections are shown that occur in all 20 subjects. The dataset is freely available from the homepage (connectomeviewer.org). Conclusions: The ConnectomeViewer is a cross-platform, open-source software tool that provides extensive visualization and analysis capabilities for connectomic research. It has a modular architecture, integrates relevant datatypes and is completely scriptable. Visit www.connectomics.org to get involved as user or developer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motivation for this research initiated from the abrupt rise and fall of minicomputers which were initially used both for industrial automation and business applications due to their significantly lower cost than their predecessors, the mainframes. Later industrial automation developed its own vertically integrated hardware and software to address the application needs of uninterrupted operations, real-time control and resilience to harsh environmental conditions. This has led to the creation of an independent industry, namely industrial automation used in PLC, DCS, SCADA and robot control systems. This industry employs today over 200'000 people in a profitable slow clockspeed context in contrast to the two mainstream computing industries of information technology (IT) focused on business applications and telecommunications focused on communications networks and hand-held devices. Already in 1990s it was foreseen that IT and communication would merge into one Information and communication industry (ICT). The fundamental question of the thesis is: Could industrial automation leverage a common technology platform with the newly formed ICT industry? Computer systems dominated by complex instruction set computers (CISC) were challenged during 1990s with higher performance reduced instruction set computers (RISC). RISC started to evolve parallel to the constant advancement of Moore's law. These developments created the high performance and low energy consumption System-on-Chip architecture (SoC). Unlike to the CISC processors RISC processor architecture is a separate industry from the RISC chip manufacturing industry. It also has several hardware independent software platforms consisting of integrated operating system, development environment, user interface and application market which enables customers to have more choices due to hardware independent real time capable software applications. An architecture disruption merged and the smartphone and tablet market were formed with new rules and new key players in the ICT industry. Today there are more RISC computer systems running Linux (or other Unix variants) than any other computer system. The astonishing rise of SoC based technologies and related software platforms in smartphones created in unit terms the largest installed base ever seen in the history of computers and is now being further extended by tablets. An underlying additional element of this transition is the increasing role of open source technologies both in software and hardware. This has driven the microprocessor based personal computer industry with few dominating closed operating system platforms into a steep decline. A significant factor in this process has been the separation of processor architecture and processor chip production and operating systems and application development platforms merger into integrated software platforms with proprietary application markets. Furthermore the pay-by-click marketing has changed the way applications development is compensated: Three essays on major trends in a slow clockspeed industry: The case of industrial automation 2014 freeware, ad based or licensed - all at a lower price and used by a wider customer base than ever before. Moreover, the concept of software maintenance contract is very remote in the app world. However, as a slow clockspeed industry, industrial automation has remained intact during the disruptions based on SoC and related software platforms in the ICT industries. Industrial automation incumbents continue to supply systems based on vertically integrated systems consisting of proprietary software and proprietary mainly microprocessor based hardware. They enjoy admirable profitability levels on a very narrow customer base due to strong technology-enabled customer lock-in and customers' high risk leverage as their production is dependent on fault-free operation of the industrial automation systems. When will this balance of power be disrupted? The thesis suggests how industrial automation could join the mainstream ICT industry and create an information, communication and automation (ICAT) industry. Lately the Internet of Things (loT) and weightless networks, a new standard leveraging frequency channels earlier occupied by TV broadcasting, have gradually started to change the rigid world of Machine to Machine (M2M) interaction. It is foreseeable that enough momentum will be created that the industrial automation market will in due course face an architecture disruption empowered by these new trends. This thesis examines the current state of industrial automation subject to the competition between the incumbents firstly through a research on cost competitiveness efforts in captive outsourcing of engineering, research and development and secondly researching process re- engineering in the case of complex system global software support. Thirdly we investigate the industry actors', namely customers, incumbents and newcomers, views on the future direction of industrial automation and conclude with our assessments of the possible routes industrial automation could advance taking into account the looming rise of the Internet of Things (loT) and weightless networks. Industrial automation is an industry dominated by a handful of global players each of them focusing on maintaining their own proprietary solutions. The rise of de facto standards like IBM PC, Unix and Linux and SoC leveraged by IBM, Compaq, Dell, HP, ARM, Apple, Google, Samsung and others have created new markets of personal computers, smartphone and tablets and will eventually also impact industrial automation through game changing commoditization and related control point and business model changes. This trend will inevitably continue, but the transition to a commoditized industrial automation will not happen in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational modeling has become a widely used tool for unraveling the mechanisms of higher level cooperative cell behavior during vascular morphogenesis. However, experimenting with published simulation models or adding new assumptions to those models can be daunting for novice and even for experienced computational scientists. Here, we present a step-by-step, practical tutorial for building cell-based simulations of vascular morphogenesis using the Tissue Simulation Toolkit (TST). The TST is a freely available, open-source C++ library for developing simulations with the two-dimensional cellular Potts model, a stochastic, agent-based framework to simulate collective cell behavior. We will show the basic use of the TST to simulate and experiment with published simulations of vascular network formation. Then, we will present step-by-step instructions and explanations for building a recent simulation model of tumor angiogenesis. Demonstrated mechanisms include cell-cell adhesion, chemotaxis, cell elongation, haptotaxis, and haptokinesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MIGCLIM R package is a function library for the open source R software that enables the implementation of species-specific dispersal constraints into projections of species distribution models under environmental change and/or landscape fragmentation scenarios. The model is based on a cellular automaton and the basic modeling unit is a cell that is inhabited or not. Model parameters include dispersal distance and kernel, long distance dispersal, barriers to dispersal, propagule production potential and habitat invasibility. The MIGCLIM R package has been designed to be highly flexible in the parameter values it accepts, and to offer good compatibility with existing species distribution modeling software. Possible applications include the projection of future species distributions under environmental change conditions and modeling the spread of invasive species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Gene expression analysis has emerged as a major biological research area, with real-time quantitative reverse transcription PCR (RT-QPCR) being one of the most accurate and widely used techniques for expression profiling of selected genes. In order to obtain results that are comparable across assays, a stable normalization strategy is required. In general, the normalization of PCR measurements between different samples uses one to several control genes (e. g. housekeeping genes), from which a baseline reference level is constructed. Thus, the choice of the control genes is of utmost importance, yet there is not a generally accepted standard technique for screening a large number of candidates and identifying the best ones. Results: We propose a novel approach for scoring and ranking candidate genes for their suitability as control genes. Our approach relies on publicly available microarray data and allows the combination of multiple data sets originating from different platforms and/or representing different pathologies. The use of microarray data allows the screening of tens of thousands of genes, producing very comprehensive lists of candidates. We also provide two lists of candidate control genes: one which is breast cancer-specific and one with more general applicability. Two genes from the breast cancer list which had not been previously used as control genes are identified and validated by RT-QPCR. Open source R functions are available at http://www.isrec.isb-sib.ch/similar to vpopovic/research/ Conclusion: We proposed a new method for identifying candidate control genes for RT-QPCR which was able to rank thousands of genes according to some predefined suitability criteria and we applied it to the case of breast cancer. We also empirically showed that translating the results from microarray to PCR platform was achievable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present and validate BlastR, a method for efficiently and accurately searching non-coding RNAs. Our approach relies on the comparison of di-nucleotides using BlosumR, a new log-odd substitution matrix. In order to use BlosumR for comparison, we recoded RNA sequences into protein-like sequences. We then showed that BlosumR can be used along with the BlastP algorithm in order to search non-coding RNA sequences. Using Rfam as a gold standard, we benchmarked this approach and show BlastR to be more sensitive than BlastN. We also show that BlastR is both faster and more sensitive than BlastP used with a single nucleotide log-odd substitution matrix. BlastR, when used in combination with WU-BlastP, is about 5% more accurate than WU-BlastN and about 50 times slower. The approach shown here is equally effective when combined with the NCBI-Blast package. The software is an open source freeware available from www.tcoffee.org/blastr.html.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distinguishing subpopulations in group behavioral experiments can reveal the impact of differences in genetic, pharmacological and life-histories on social interactions and decision-making. Here we describe Fluorescence Behavioral Imaging (FBI), a toolkit that uses transgenic fluorescence to discriminate subpopulations, imaging hardware that simultaneously records behavior and fluorescence expression, and open-source software for automated, high-accuracy determination of genetic identity. Using FBI, we measure courtship partner choice in genetically mixed groups of Drosophila.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BIOMOD is a computer platform for ensemble forecasting of species distributions, enabling the treatment of a range of methodological uncertainties in models and the examination of species-environment relationships. BIOMOD includes the ability to model species distributions with several techniques, test models with a wide range of approaches, project species distributions into different environmental conditions (e.g. climate or land use change scenarios) and dispersal functions. It allows assessing species temporal turnover, plot species response curves, and test the strength of species interactions with predictor variables. BIOMOD is implemented in R and is a freeware, open source, package

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the advancement of phylogenetic methods to estimate speciation and extinction rates, their power can be limited under variable rates, in particular for clades with high extinction rates and small number of extant species. Fossil data can provide a powerful alternative source of information to investigate diversification processes. Here, we present PyRate, a computer program to estimate speciation and extinction rates and their temporal dynamics from fossil occurrence data. The rates are inferred in a Bayesian framework and are comparable to those estimated from phylogenetic trees. We describe how PyRate can be used to explore different models of diversification. In addition to the diversification rates, it provides estimates of the parameters of the preservation process (fossilization and sampling) and the times of speciation and extinction of each species in the data set. Moreover, we develop a new birth-death model to correlate the variation of speciation/extinction rates with changes of a continuous trait. Finally, we demonstrate the use of Bayes factors for model selection and show how the posterior estimates of a PyRate analysis can be used to generate calibration densities for Bayesian molecular clock analysis. PyRate is an open-source command-line Python program available at http://sourceforge.net/projects/pyrate/.