19 resultados para Enterococci
em Université de Lausanne, Switzerland
Resumo:
OBJECTIVES: Daptomycin was tested in vitro and in rats with experimental endocarditis against the ampicillin-susceptible and vancomycin-susceptible Enterococcus faecalis JH2-2, the vancomycin-resistant (VanA type) mutant of strain JH2-2 (strain JH2-2/pIP819), and the ampicillin-resistant and vancomycin-resistant (VanB type) Enterococcus faecium D366. METHODS: Rats with catheter-induced aortic vegetations were treated with doses simulating intravenously kinetics in humans of daptomycin (6 mg/kg every 24 h), amoxicillin (2 g every 6 h), vancomycin (1 g every 12 h) or teicoplanin (12 mg/kg every 12 h). Treatment was started 16 h post-inoculation and continued for 2 days. RESULTS: MICs of daptomycin were 1, 1 and 2 mg/L, respectively, for strains JH2-2, JH2-2/pIP819 and D366. In time-kill studies, daptomycin showed rapid (within 2 h) bactericidal activity against all strains. Daptomycin was highly bound to rat serum proteins (89%). In the presence of 50% rat serum, simulating free concentrations, daptomycin killing was maintained but delayed (6-24 h). In vivo, daptomycin treatment resulted in 10 of 12 (83%), 9 of 11 (82%) and 11 of 12 (91%) culture-negative vegetations in rats infected with strains JH2-2, JH2-2/pIP819 and D366, respectively (P < 0.001 compared to controls). Daptomycin efficacy was comparable to that of amoxicillin and vancomycin for susceptible isolates. Daptomycin, however, was significantly (P < 0.05) more effective than teicoplanin against the glycopeptide-susceptible strain JH2-2 and superior to all comparators against resistant isolates. CONCLUSIONS: These results support the use of the newly proposed daptomycin dose of 6 mg/kg every 24 h for treatment of enterococcal infections in humans.
Resumo:
Daptomycin is bactericidal against meticillin-resistant Staphylococcus aureus (MRSA), glycopeptide-intermediate-resistant S. aureus (GISA) and vancomycin-susceptible and -resistant enterococci. However, selection for daptomycin-resistant derivatives has occasionally been reported during therapy in humans. Here we evaluate whether selection for daptomycin-resistant S. aureus or enterococci could be prevented in vitro by combining daptomycin with amoxicillin/clavulanic acid, ampicillin, gentamicin or rifampicin. Six strains of S. aureus (four MRSA and two GISA) and four strains of enterococci (two Enterococcus faecalis and two Enterococcus faecium) were serially exposed in broth to two-fold stepwise increasing concentrations of daptomycin alone or in combination with a fixed concentration [0.25x minimum inhibitory concentration (MIC)] of either of the second agents. The daptomycin MIC was examined after each cycle. Exposure to daptomycin alone gradually selected for S. aureus and enterococci with an increased MIC. Gentamicin did not prevent the emergence of daptomycin-resistant bacteria. Rifampicin was also unable to prevent daptomycin resistance, although resistance was slightly delayed. In contrast, amoxicillin/clavulanic acid or ampicillin prevented or greatly delayed the selection of daptomycin-resistant mutants in S. aureus and enterococci, respectively. Addition of amoxicillin/clavulanic acid or ampicillin to daptomycin prevents, or greatly delays, daptomycin resistance in vitro. Future studies in animal models are needed to predict the utility of these combinations in humans.
Resumo:
The widespread incidence of enterococci resistant to ampicillin, vancomycin and aminoglycosides, the first-line anti-enterococcal antibiotics, has made the treatment of severe enterococcal infections difficult and alternatives should be explored. We investigated the activity of daptomycin combined with linezolid against three Enterococcus faecalis and four Enterococcus faecium strains resistant to standard drugs used for therapy. Minimum inhibitory concentrations (MICs) were determined by the broth dilution method. Drug interactions were assessed by the checkerboard and time-kill methods. Synergy was defined by a fractional inhibitory concentration index (FICI) of ≤0.5 or a ≥2 log10 CFU/mL killing at 24 h with the combination in comparison with killing by the most active single agent. Indifference was defined by a FICI > 0.5-4.0 or a 1-2 log10 CFU/mL killing compared with the most active single agent. MICs of daptomycin were 2-4 μg/mL for E. faecalis and 2-8 μg/mL for E. faecium. MICs of linezolid were 1-2 μg/mL for all bacteria. In the checkerboard assay, five isolates showed synergism (FICI < 0.5) and two showed indifference (FICIs of 0.53 and 2). Killing studies revealed synergy of daptomycin plus linezolid against four isolates (2.2-3.7 log10 CFU/mL kill) and indifference (1.1-1.6 log10 CFU/mL kill) for the other three strains. Antagonism was not observed. In conclusion, the combination of daptomycin and linezolid had a synergistic or indifferent effect against multidrug-resistant enterococci. Additional studies are needed to explore the potential of this combination for severe enterococcal infections when first-line antibiotic combinations cannot be used.
Resumo:
An outbreak of vancomycin-resistant enterococci (VRE) occurred in 2011 in several hospitals of western Switzerland. Given that VRE can spread rapidly within hospitals and due to the potential transfer of resistance genes to other nosocomial pathogens like MRSA, stringent control measures were implemented. Excellent coordination of control measures between partner healthcare settings was successful in stopping the outbreak.
Resumo:
Background: Local antibiotics may significantly improve the treatmentoutcome in bone infection without systemic toxicity. For impregnationof polymethylmethacrylate (PMMA), gentamicin, vancomycin and/orclindamycin are currently used. A new lipopeptid antibiotic,daptomycin, is a promising candidate for local treatment due to itsspectrum against staphylococci and enterococci (including multiresistantstrains), and concentration-dependent rapid bactericidalactivity. We investigated activity of antibiotic-loaded PMMA againstStaphylococcus epidermidis biofilms using an ultra-sensitive bacterialheat detection method (microcalorimetry).Methods: Staphylococcus epidermidis (strain RP62A, susceptibleto daptomycin, vancomycin and gentamicin) at concentration 106bacteria/ml was incubated with 2 g-PMMA block (Palacos, HeraeusMedical, Hanau, Germany) in 25 ml tryptic soy broth (TSB)supplemented with calcium. PMMA blocks were preloaded withdaptomycin, vancomycin and gentamicin each at 2 g/40 mg (= 100 mg/block) PMMA. After 72 h-incubation at 35 °C under static conditions,PMMA blocks were rinsed in phosphate-buffered solution (PBS) 5times and transferred in 4 ml-microcalorimetry ampoule filled with 1 mlTSB. Bacterial heat production, which is proportional to the quantityof biofilm on PMMA surface, was measured by isothermalmicrocalorimetry. The detection time was calculated as the time untilthe heat flow reached 20 microwatt.Results: Biomechanical properties did not differ between antibioticloadedand non-loaded PMMA blocks. The mean detection time (±standard deviation) of bacterial heat was 6.5 ± 0.4 h for PMMA withoutantibiotics (negative control), 13.5 ± 4.6 h for PMMA with daptomycin,14.0 ± 4.1 h for PMMA with vancomycin and 5.0 ± 0.4 h for PMMAwith gentamicin.Conclusion: Our data indicates that antibiotics at 2 g/40 mg PMMAdid not change the biomechanical properties of bone cement. Daptomycinand vancomycin were more active than gentamicin against S.epidermidis biofilms when all tested at 2 g/40 mg PMMA. In the nextstep, higher concentrations of daptomycin and their elution kineticneeds to be determined to optimize its antibiofilm activity before usingin the clinical setting.
Resumo:
PURPOSE: The diagnosis of microbial ureteral stent colonisation (MUSC) is difficult, since routine diagnostic techniques do not accurately detect microorganisms embedded in biofilms. New methods may improve diagnostic yield and understanding the pathophysiology of MUSC. The aim of the present study was to evaluate the potential of sonication in the detection of MUSC and to identify risk factors for device colonisation. METHODS: Four hundred and eight polyurethane ureteral stents of 300 consecutive patients were prospectively evaluated. Conventional urine culture (CUC) was obtained prior to stent placement and device removal. Sonication was performed to dislodge adherent microorganisms. Data of patient sex and age, indwelling time and indication for stent placement were recorded. RESULTS: Sonicate-fluid culture detected MUSC in 36%. Ureteral stents inserted during urinary tract infection (UTI) were more frequently colonised (59%) compared to those placed in sterile urine (26%; P < 0.001). Female sex (P < 0.001) and continuous stenting (P < 0.005) were significant risk factors for MUSC; a similar trend was observed in patients older than 50 years (P = 0.16). MUSC and indwelling time were positively correlated (P < 0.005). MUSC was accompanied by positive CUC in 36%. Most commonly isolated microorganisms were Coagulase-negative staphylococci (18.3%), Enterococci (17.9%) and Enterobacteriaceae (16.9%). CONCLUSIONS: Sonication is a promising approach in the diagnosis of MUSC. Significant risk factors for MUSC are UTI at the time of stent insertion, female sex, continuous stenting and indwelling time. CUC is a poor predictor of MUSC. The clinical relevance of MUSC needs further evaluation to classify isolated microorganism properly as contaminants or pathogens.
Resumo:
Background: Negative pressure wound treatment is increasingly used through a Vacuum-Assisted Closure (VAC) device in complex wound situations. For this purpose, sterile polyurethane (PU) and polyvinyl alcohol (PVA) foam dressings are fitted to the wound size and covered with an adhesive drape to create an airtight seal. Little information exists about the type and quantity of microorganisms within the foams. Therefore, we investigated VAC foams after removal from the wound using a validated method (sonication) to detect the bacterial bioburden in the foam consisting as microbial biofilms.Methods: We prospectively included VAC foams (PU and PVA, KCI, Rümlamg, Switzerland) without antibacterial additions (e.g. silver), which were removed from wounds in patients with chronic ulcers from January 2007 through December 2008. Excluded were patients with acute wound infection, necrotizing fasciitis, underlying osteomyelitis or implant. Removed foams from regular changes of dressing were aseptically placed in a container with 100 ml sterile Ringer's solution. Within 4 hours after removal, foams were sonicated for 5 min at 40 kHz (as described in NEJM 2007;357:654). The resulting sonication fluid was cultured at 37°C on aerobic blood agar plates for 5 days. Microbes were quantified as No. of colony-forming units (CFU)/ml sonication fluid and identified to the species level.Results: A total of 68 foams (38 PU and 30 PVA) from 55 patients were included in the study (median age 71 years; range 33-88 years, 57% were man). Foams were removed from the following anatomic sites: sacrum (n=29), ischium (n=18), heel (n=13), calves (n=6) and ankle (n=2). The median duration of being in place was 3 days (range, 1-8 days). In all 68 foams, bacteria were found in large quantities (median 105 CFU/ml, range 102-7 CFU/ml sonication fluid. No differences were found between PU and PVA foams. One type of organisms was found in 11 (16%), two in 17 (24%) and 3 or more in 40 (60%) foams. Gram-negative rods (Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa) were isolated in 70%, followed by Staphylococcus aureus (20%), koagulase-negative staphylococci, streptococci (8%), and enterococci (2%).Conclusion: With sonication, a high density of bacteria present in VAC foams was demonstrated after a median of 3 days. Future studies are needed to investigate whether antimicrobial-impregnated foams can reduce the bacterial load in foams and potentially improve wound healing.
Resumo:
Background: Prosthetic joint infections (PJI) lead to significant long-term morbidity with high cost of healthcare. We evaluated characteristics of infections and the infection and functional outcome of knee PJI over a 10-year period. Methods: All patients hospitalized at our institution from 1/2000 through 12/2009 with knee PJI (defined as growth of the same microorganism in ≥2 tissue or synovial fluid cultures, visible purulence, sinus tract or acute inflammation on tissue histopathology) were included. Patients, their relatives and/or treating physicians were contacted to determine the outcome. Results: During the study period, 61 patients with knee PJI were identified. The median age at the time of diagnosis of infection was 73 y (range, 53-94 y); 52% were men. Median hospital stay was 37 d (range, 1-145 d). Most reasons for primary arthroplasty was osteoarthritis (n = 48), trauma (n = 9) and rheumatoid arthritis (n = 4). 23 primary surgeries (40%) were performed at CHUV, 34 (60%) elsewhere. After surgery, 8 PJI were early (<3 months), 16 delayed (3-24 months) and 33 late (>24 months). PJI were treated with (i) open or arthroscopic debridement with prosthesis retention in 26 (46%), (ii) one-stage exchange in 1, (iii) two-stage exchange in 22 (39%) and (iv) prosthesis removal in 8 (14%). Isolated pathogens were S. aureus (13), coagulase-negative staphylococci (10), streptococci (5), enterococci (3), gram-negative rods (3) and anaerobes (3). Patients were followed for a median of 3.1 years, 2 patients died (unrelated to PJI). The outcome of infection was favorable in 50 patients (88%), whereas the functional outcome was favorable in 33 patients (58%). Conclusions: With the current treatment concept, the high cure rate of infection (88%) is associated with a less favorable functional outcome o 58%. Earlier surgical intervention and more rapid and improved diagnosis of infection may improve the functional outcome of PJI.
Resumo:
Enterococci are reportedly the third most common group of endocarditis-causing pathogens but data on enterococcal infective endocarditis (IE) are limited. The aim of this study was to analyse the characteristics and prognostic factors of enterococcal IE within the International Collaboration on Endocarditis. In this multicentre, prospective observational cohort study of 4974 adults with definite IE recorded from June 2000 to September 2006, 500 patients had enterococcal IE. Their characteristics were described and compared with those of oral and group D streptococcal IE. Prognostic factors for enterococcal IE were analysed using multivariable Cox regression models. The patients' mean age was 65 years and 361/500 were male. Twenty-three per cent (117/500) of cases were healthcare related. Enterococcal IE were more frequent than oral and group D streptococcal IE in North America. The 1-year mortality rate was 28.9% (144/500). E. faecalis accounted for 90% (453/500) of enterococcal IE. Resistance to vancomycin was observed in 12 strains, eight of which were observed in North America, where they accounted for 10% (8/79) of enterococcal strains, and was more frequent in E. faecium than in E. faecalis (3/16 vs. 7/364 , p 0.01). Variables significantly associated with 1-year mortality were heart failure (HR 2.4, 95% CI 1.7--3.5, p <0.0001), stroke (HR 1.9, 95% CI 1.3--2.8, p 0.001) and age (HR 1.02 per 1-year increment, 95% CI 1.01--1.04, p 0.002). Surgery was not associated with better outcome. Enterococci are an important cause of IE, with a high mortality rate. Healthcare association and vancomycin resistance are common in particular in North America.
Resumo:
BACKGROUND: Fever and neutropenia (FN) often complicate anticancer treatment and can be caused by potentially fatal infections. Knowledge of pathogen distribution is paramount for optimal patient management. METHODS: Microbiologically defined infections (MDI) in pediatric cancer patients presenting with FN by nonmyeloablative chemotherapy enrolled in a prospective multi-center study were analyzed. Effectiveness of empiric antibiotic therapy in FN episodes with bacteremia was assessed taking into consideration recently published treatment guidelines for pediatric patients with FN. RESULTS: MDI were identified in a minority (22%) of pediatric cancer patients with FN. In patients with, compared to without MDI, fever (median, 5 [IQR 3-8] vs. 2 [IQR1-3] days, p < 0.001) and hospitalization (10 [6-14] vs. 5 [3-8] days, p < 0.001) lasted longer, transfer to the intensive care unit was more likely (13 of 95 [14%] vs. 7 of 346 [2.0%], p < 0.001), and antibiotics were given longer (10 [7-14] vs. 5 [4-7], p < 0.001). Empiric antibiotic therapy in FN episodes with bacteremia was highly effective if not only intrinsic and reported antimicrobial susceptibilities were considered but the purposeful omission of coverage for coagulase negative staphylococci and enterococci was also taken into account (81% [95%CI 68 - 90] vs. 96.6% [95%CI 87 - 99.4], p = 0.004) CONCLUSIONS: MDI were identified in a minority of FN episodes but they significantly affected management and the clinical course of pediatric cancer patients. Compliance with published guidelines was associated with effectiveness of empiric antibiotic therapy in FN episodes with bacteremia.
Aetiology and resistance in bacteraemias among adult and paediatric haematology and cancer patients.
Resumo:
OBJECTIVES: A knowledge of current epidemiology and resistance patterns is crucial to the choice of empirical treatment for bacteraemias in haematology and cancer patients. METHODS: A literature review on bacteraemias in cancer patients considered papers published between January 1st 2005 and July 6th 2011. Additionally, in 2011, a questionnaire on the aetiology and resistance in bacteraemias, and empirical treatment, was sent to participants of the European Conference on Infections in Leukemia (ECIL) meetings; recipients were from 80 haematology centres. RESULTS: For the literature review, data from 49 manuscripts were analysed. The questionnaire obtained responses from 39 centres in 18 countries. Compared with the published data, the questionnaire reported more recent data, and showed a reduction of the Gram-positive to Gram-negative ratio (55%:45% vs. 60%:40%), increased rates of enterococci (8% vs. 5%) and Enterobacteriaceae (30% vs. 24%), a decreased rate of Pseudomonas aeruginosa (5% vs. 10%), and lower resistance rates for all bacteria. Nevertheless the median rates of ESBL-producers (15-24%), aminoglycoside-resistant Gram-negatives (5-14%) and carbapenem-resistant P. aeruginosa (5-14%) were substantial, and significantly higher in South-East vs. North-West Europe. CONCLUSIONS: The published epidemiological data on bacteraemias in haematology are scanty and mostly dated. Important differences in aetiology and resistance exist among centres. Updated analyses of the local epidemiology are mandatory to support appropriate empirical therapy.
Resumo:
Fifty years ago, the introduction of penicillin, followed by many other antibacterial agents, represented an often underestimated medical revolution. Indeed, until that time, bacterial infections were the prime cause of mortality, especially in children and elderly patients. The discovery of numerous new substances and their development on an industrial scale confronted us with the illusion that bacterial infections were all but vanquished. However, the widespread and sometimes uncontrolled usage of these agents has led to the selection of bacteria resistant to practically all available antibiotics. Bacteria utilize three main resistance strategies: (i) decrease in drug accumulation, (ii) modification of target, and (iii) modification of the antibiotic. Bacteria can decrease drug accumulation either by becoming impermeable to antibiotics, or by actively excreting the drug accumulated in the cell. As an alternative, they can modify the structure of the antibiotic's molecular target--usually an essential metabolic enzyme of the bacteria--and thus escape the drug's toxic effect. Lastly, they can produce enzymes capable of modifying and directly inactivating the antibiotics. In addition, bacteria have evolved extremely efficient genetic transfer systems capable of exchanging and accumulating resistance genes. Some pathogens, such as methicillin-resistant Staphylococcus aureus and enterococci are now resistant to almost all available antibiotics. Vancomycin is the only non-experimental drug left to treat severe infections due to such organisms. However, vancomycin resistance has already appeared several years ago in enterococci, and was also recently described in staphylococci, in Japan, France and the United-States. Antibiotics are precious drugs which must be administered to patients who need them. On the other hand, the development of resistance must be kept under control by a better comprehension of its mechanisms and modes of transmission and by abiding by the fundamental rules of anti-infectious chemotherapy, i.e.: (i) choose the most efficient antibiotic according to clinical and local epidemiological data, (ii) target the bacteria according to the microbiological data at hand, and (iii) administer the antibiotic at an adequate dose which will leave the pathogen no chance to develop any resistance.
Resumo:
BACKGROUND: Abdominal infections are frequent causes of sepsis and septic shock in the intensive care unit (ICU) and are associated with adverse outcomes. We analyzed the characteristics, treatments and outcome of ICU patients with abdominal infections using data extracted from a one-day point prevalence study, the Extended Prevalence of Infection in the ICU (EPIC) II. METHODS: EPIC II included 13,796 adult patients from 1,265 ICUs in 75 countries. Infection was defined using the International Sepsis Forum criteria. Microbiological analyses were performed locally. Participating ICUs provided patient follow-up until hospital discharge or for 60 days. RESULTS: Of the 7,087 infected patients, 1,392 (19.6%) had an abdominal infection on the study day (60% male, mean age 62 ± 16 years, SAPS II score 39 ± 16, SOFA score 7.6 ± 4.6). Microbiological cultures were positive in 931 (67%) patients, most commonly Gram-negative bacteria (48.0%). Antibiotics were administered to 1366 (98.1%) patients. Patients who had been in the ICU for ≤ 2 days prior to the study day had more Escherichia coli, methicillin-sensitive Staphylococcus aureus and anaerobic isolates, and fewer enterococci than patients who had been in the ICU longer. ICU and hospital mortality rates were 29.4% and 36.3%, respectively. ICU mortality was higher in patients with abdominal infections than in those with other infections (29.4% vs. 24.4%, p < 0.001). In multivariable analysis, hematological malignancy, mechanical ventilation, cirrhosis, need for renal replacement therapy and SAPS II score were independently associated with increased mortality. CONCLUSIONS: The characteristics, microbiology and antibiotic treatment of abdominal infections in critically ill patients are diverse. Mortality in patients with isolated abdominal infections was higher than in those who had other infections.
Resumo:
BACKGROUND: Elderly patients are emerging as a population at high risk for infective endocarditis (IE). However, adequately sized prospective studies on the features of IE in elderly patients are lacking. METHODS: In this multinational, prospective, observational cohort study within the International Collaboration on Endocarditis, 2759 consecutive patients were enrolled from June 15, 2000, to December 1, 2005; 1056 patients with IE 65 years or older were compared with 1703 patients younger than 65 years. Risk factors, predisposing conditions, origin, clinical features, course, and outcome of IE were comprehensively analyzed. RESULTS: Elderly patients reported more frequently a hospitalization or an invasive procedure before IE onset. Diabetes mellitus and genitourinary and gastrointestinal cancer were the major predisposing conditions. Blood culture yield was higher among elderly patients with IE. The leading causative organism was Staphylococcus aureus, with a higher rate of methicillin resistance. Streptococcus bovis and enterococci were also significantly more prevalent. The clinical presentation of elderly patients with IE was remarkable for lower rates of embolism, immune-mediated phenomena, or septic complications. At both echocardiography and surgery, fewer vegetations and more abscesses were found, and the gain in the diagnostic yield of transesophageal echocardiography was significantly larger. Significantly fewer elderly patients underwent cardiac surgery (38.9% vs 53.5%; P < .001). Elderly patients with IE showed a higher rate of in-hospital death (24.9% vs 12.8%; P < .001), and age older than 65 years was an independent predictor of mortality. CONCLUSIONS: In this large prospective study, increasing age emerges as a major determinant of the clinical characteristics of IE. Lower rates of surgical treatment and high mortality are the most prominent features of elderly patients with IE. Efforts should be made to prevent health care-associated acquisition and improve outcomes in this major subgroup of patients with IE.
Resumo:
BACKGROUND: Empirical antibacterial therapy in hospitals is usually guided by local epidemiologic features reflected by institutional cumulative antibiograms. We investigated additional information inferred by aggregating cumulative antibiograms by type of unit or according to the place of acquisition (i.e. community vs. hospital) of the bacteria. MATERIALS AND METHODS: Antimicrobial susceptibility rates of selected pathogens were collected over a 4-year period in an university-affiliated hospital. Hospital-wide antibiograms were compared with those selected by type of unit and sampling time (<48 or >48 h after hospital admission). RESULTS: Strains isolated >48 h after admission were less susceptible than those presumably arising from the community (<48 h). The comparison of units revealed significant differences among strains isolated >48 h after admission. When compared to hospital-wide antibiograms, susceptibility rates were lower in the ICU and surgical units for Escherichia coli to amoxicillin-clavulanate, enterococci to penicillin, and Pseudomonas aeruginosa to anti-pseudomonal beta-lactams, and in medical units for Staphylococcus aureus to oxacillin. In contrast, few differences were observed among strains isolated within 48 h of admission. CONCLUSIONS: Hospital-wide antibiograms reflect the susceptibility pattern for a specific unit with respect to community-acquired, but not to hospital-acquired strains. Antibiograms adjusted to these parameters may be useful in guiding the choice of empirical antibacterial therapy.