26 resultados para Enfermedades por herpesvirus
em Université de Lausanne, Switzerland
Resumo:
Antiretroviral-therapy has dramatically changed the course of HIV infection and HIV-infected (HIV(+)) individuals are becoming more frequently eligible for solid-organ transplantation. However, only scarce data are available on how immunosuppressive (IS) strategies relate to transplantation outcome and immune function. We determined the impact of transplantation and immune-depleting treatment on CD4+ T-cell counts, HIV-, EBV-, and Cytomegalovirus (CMV)-viral loads and virus-specific T-cell immunity in a 1-year prospective cohort of 27 HIV(+) kidney transplant recipients. While the results show an increasing breadth and magnitude of the herpesvirus-specific cytotoxic T-cell (CTL) response over-time, they also revealed a significant depletion of polyfunctional virus-specific CTL in individuals receiving thymoglobulin as a lymphocyte-depleting treatment. The disappearance of polyfunctional CTL was accompanied by virologic EBV-reactivation events, directly linking the absence of specific polyfunctional CTL to viral reactivation. The data provide first insights into the immune-reserve in HIV+ infected transplant recipients and highlight new immunological effects of thymoglobulin treatment. Long-term studies will be needed to assess the clinical risk associated with thymoglobulin treatment, in particular with regards to EBV-associated lymphoproliferative diseases.
Resumo:
BACKGROUND: Tumor necrosis factor/tumor necrosis factor receptor superfamily members conform a group of molecular interaction pathways of essential relevance during the process of T-cell activation and differentiation toward effector cells and particularly for the maintenance phase of the immune response. Specific blockade of these interacting pathways, such as CD40-CD40L, contributes to modulate the deleterious outcome of allogeneic immune responses. We postulated that antagonizing the interaction of LIGHT expression on activated T cells with its receptors, herpesvirus entry mediator and lymphotoxin β receptor, may decrease T cell-mediated allogeneic responses. METHODS: A flow cytometry competition assay was designed to identify anti-LIGHT monoclonal antibodies capable to prevent the interaction of mouse LIGHT with its receptors expressed on transfected cells. An antibody with the desired specificity was evaluated in a short-term in vivo allogeneic cytotoxic assay and tested for its ability to detect endogenous mouse LIGHT. RESULTS: We provide evidence for the first time that in mice, as previously described in humans, LIGHT protein is rapidly and transiently expressed after T-cell activation, and this expression was stronger on CD8 T cells than on CD4 T cells. Two anti-LIGHT antibodies prevented interactions of mouse LIGHT with its two known receptors, herpesvirus entry mediator and lymphotoxin β receptor. In vivo administration of anti-LIGHT antibody (clone 10F12) ameliorated host antidonor short-term cytotoxic response in wild type B6 mice, although to a lesser extent than that observed in LIGHT-deficient mice. CONCLUSION: The therapeutic targeting of LIGHT may contribute to achieve a better control of cytotoxic responses refractory to current immunosuppressive drugs in transplantation.
Resumo:
We have previously reported on the death effector domain containing E8 gene product from equine herpesvirus-2, designated FLICE inhibitory protein (v-FLIP), and on its cellular homologue, c-FLIP, which inhibit the activation of caspase-8 by death receptors. Here we report on the structure and function of the E10 gene product of equine herpesvirus-2, designated v-CARMEN, and on its cellular homologue, c-CARMEN, which contain a caspase-recruiting domain (CARD) motif. c-CARMEN is highly homologous to the viral protein in its N-terminal CARD motif but differs in its C-terminal extension. v-CARMEN and c-CARMEN interact directly in a CARD-dependent manner yet reveal different binding specificities toward members of the tumor necrosis factor receptor-associated factor (TRAF) family. v-CARMEN binds to TRAF6 and weakly to TRAF3 and, upon overexpression, potently induces the c-Jun N-terminal kinase (JNK), p38, and nuclear factor (NF)-kappaB transcriptional pathways. c-CARMEN or truncated versions thereof do not appear to induce JNK and NF-kappaB activation by themselves, nor do they affect the JNK and NF-kappaB activating potential of v-CARMEN. Thus, in contrast to the cellular homologue, v-CARMEN may have additional properties in its unique C terminus that allow for an autonomous activator effect on NF-kappaB and JNK. Through activation of NF-kappaB, v-CARMEN may regulate the expression of the cellular and viral genes important for viral replication.
Resumo:
v-E10, a caspase recruitment domain (CARD)-containing gene product of equine herpesvirus 2, is the viral homologue of the bcl-10 protein whose gene was found to be translocated in mucosa-associated lymphoid tissue (MALT) lymphomas. v-E10 efficiently activates the c-jun NH(2)-terminal kinase (JNK), p38 stress kinase, and the nuclear factor (NF)-kappaB transcriptional pathway and interacts with its cellular homologue, bcl-10, via a CARD-mediated interaction. Here we demonstrate that v-E10 contains a COOH-terminal geranylgeranylation consensus site which is responsible for its plasma membrane localization. Expression of v-E10 induces hyperphosphorylation and redistribution of bcl-10 from the cytoplasm to the plasma membrane, a process which is dependent on the intactness of the v-E10 CARD motif. Both membrane localization and a functional CARD motif are important for v-E10-mediated NF-kappaB induction, but not for JNK activation, which instead requires a functional v-E10 binding site for tumor necrosis factor receptor-associated factor (TRAF)6. Moreover, v-E10-induced NF-kappaB activation is inhibited by a dominant negative version of the bcl-10 binding protein TRAF1, suggesting that v-E10-induced membrane recruitment of cellular bcl-10 induces constitutive TRAF-mediated NF-kappaB activation.
Resumo:
This article reviews the spectrum of Epstein-Barr virus and Kaposi sarcoma herpesvirus (KSHV/HHV-8)-associated B-cell lymphoid proliferations, their pathologic features and clinical presentation, diagnostic criteria, and pathogenetic aspects. Emphasis is on the differential diagnosis issues and difficulties that the pathologist may face for the correct identification and interpretation of these lesions.
Resumo:
BACKGROUND: Cytomegalovirus (CMV), human herpesvirus-6 and -7 (HHV-6 and -7) are beta-herpesviruses that commonly reactivate and have been proposed to trigger acute rejection and chronic allograft injury. We assessed the contribution of these viruses in the development of bronchiolitis obliterans syndrome (BOS) after lung transplantation. METHODS: Quantitative real-time polymerase chain reaction of bronchoalveolar lavage samples were performed for CMV, HHV-6 and -7 in a prospective cohort of lung transplant recipients. A time-dependent Cox regression analysis was used to correlate the risk of BOS and acute rejection in patients with and without beta-herpesviruses infection. RESULTS: Ninety-three patients were included in the study over a period of 3 years. A total of 581 samples from bronchoalveolar lavage were obtained. Sixty-one patients (65.6%) had at least one positive result for one of the beta-herpesviruses: 48 patients (51.6%) for CMV and 19 patients (20.4%) for both HHV-6 and -7. Median peak viral load was 3419 copies/mL for CMV, 258 copies/mL for HHV-6, and 665 copies/mL for HHV-7. Acute rejection (>or=grade 2) occurred in 46.2% and BOS (>or=stage 1) in 19.4% of the patients. In the Cox regression model the relative risk of acute rejection or BOS was not increased in patients with any beta-herpesviruses reactivation. Acute rejection was the only independently associated risk factor for BOS. CONCLUSIONS: In lung transplant recipients receiving prolonged antiviral prophylaxis, reactivation of beta-herpesviruses within the allograft was common. However, despite high viral loads in many patients, virus replication was not associated with the development of rejection or BOS.
Resumo:
Kaposi sarcoma is the most common human herpesvirus 8 (HHV-8)-related disease described after solid organ transplantation. Multicentric Castleman disease and hemophagocytic syndrome are other potential HHV-8-induced entities but are less frequently reported. We describe the case of a liver transplant recipient who presented with an acute febrile illness 1 year after transplantation with a rapidly fatal outcome. Autopsy revealed 3 distinct HHV-8-related entities: Kaposi sarcoma, HHV-8-associated multicentric Castleman disease with microlymphomas and a severe hemophagocytic syndrome. Retrospective serologic tests suggested that HHV-8 was likely transmitted by the seropositive donor at the time of transplantation. To our knowledge, this is the first case of copresentation of 3 clinical presentations of HHV-8-mediated human disease in the post-transplant setting. Considering the absence of systematic screening of organ donors/recipients for HHV-8 infection, HHV-8-related illness should be suspected in transplant recipients who present with acute febrile illness, systemic symptoms, lymphadenopathies, and/or multiorgan failure to rapidly document the diagnosis and provide timely an adequate treatment.
Resumo:
The identification of cancer-specific enzymatic activities that can be therapeutically targeted is key to the development of suitable anti-cancer drugs. Primary effusion lymphoma (PEL) is a rare and incurable malignancy that can occur in immunodeficient patients as a consequence of latent infection of B-cells with Kaposi's sarcoma-associated herpesvirus, KSHV (also known as human herpesvirus-8, HHV8). Malignant growth of KSHV-infected B cells requires the constitutive activity of the transcription factor NF-KB, which controls expression of viral genes required for maintenance of viral latency and suppression of the viral lytic program. Here we identify the protease mucosa-associated lymphoid tissue transformation protein 1 (MALTI), a key driver of NF-KB activation in lymphocytes, as an essential component in KSHV-dependent NF-KB activation and growth of latently infected PEL cell lines. Inhibition of the MALTI protease activity induced a switch from the latent to the lytic stage of viral infection, and led to reduced growth and survival of PEL cell lines in vitro and in a xenograft model. These results demonstrate a key role for the proteolytic activity of MALTI in PEL, and provide a rationale for the pharmacological targeting of MALTI in PEL therapy. -- L'identification d'activités enzymatiques propre au cancer est clé dans le développement des nouvaux médicaments anti-cancer. Le lymphome primitif des séreuses est un lymphome rare et incurable qui peut se developer chez les patients immunodéficients. Il est la conséquence d'une infection latente des cellules B, dûe à l'herpes virus 8, plus connu comme herpes virus associé au sarcome de Kaposi (KSHV). La croissance maligne des cellules B infecteés par KSHV requière l'activité constitutive du facteur de transcription NF-KB qui contrôle l'expression des genes viraux requis pour la maintenance latente et la suppression du programme de lyse du virus. Avec cette étude, nous avons identifié la protease MALTI comme un composant essentiel dans l'activation de NF-KB dans les cellules B du lymphome primitif des séreuses. L'inhibition de l'activité de la protéase MALTI induit un virement de la phase latente à la phase lytique du KSHV et conduit à une reduction de la viabilité des cellules tumorales in vitro et dans un modèle de xénogreffe. Ces résultats démontrent un rôle clé pour l'activité protéolytique de MALTI dans le développement du lymphome primitif des séreuses et soutiennent l'idée que MALTI pourrait être une cible pharmacologique dans la thérapie de cette forme rare du lymphome.
Resumo:
B and T lymphocyte attenuator (BTLA) is a negative regulator of T cell activation, but its function in vivo is not well characterized. Here we show that mice deficient in full-length BTLA or its ligand, herpesvirus entry mediator, had increased number of memory CD8(+) T cells. The memory CD8(+) T cell phenotype resulted from a T cell-intrinsic perturbation of the CD8(+) T cell pool. Naive BTLA-deficient CD8(+) T cells were more efficient than wild-type cells at generating memory in a competitive antigen-specific system. This effect was independent of the initial expansion of the responding antigen-specific T cell population. In addition, BTLA negatively regulated antigen-independent homeostatic expansion of CD4(+) and CD8(+) T cells. These results emphasize two central functions of BTLA in limiting T cell activity in vivo.
Resumo:
OBJECTIVE: To describe the effect of HAART on Kaposi sarcoma herpes virus (KSHV) antibody response and viremia among HIV-positive MSM. DESIGN: A follow-up study of 272 HIV-positive MSM (including 22 with Kaposi sarcoma) who first initiated HAART between January 1996 and July 2004 in the Swiss HIV Cohort Study. METHODS: For each individual, two serum samples, one at HAART initiation and another 24 months later, were tested for latent and lytic KSHV antibodies using immunofluorescence assays, and for KSHV viremia using PCR. Factors associated with changes in KSHV antibody titers and viremia were evaluated. RESULTS: At HAART initiation, 69.1 and 75.0% of patients were seropositive to latent and lytic KSHV antibodies, respectively. Seropositivity was associated with the presence of Kaposi sarcoma, older age, lower CD8 cell count and higher CD4/CD8 ratio. Prevalence of KSHV viremia at HAART initiation was 6.4%, being significantly higher among patients with Kaposi sarcoma (35.0%), and those with HIV viral loads 100 000 copies/ml (11.7%) or higher. At 24-month follow-up, geometric mean titers (GMTs) among KSHV seropositive patients increased and antibody seroprevalence was higher. Having Kaposi sarcoma and/or CD4 cell counts less than 50 cells/microl at HAART initiation was associated both with higher probability for antibody titers to increase (including seroconversion) and larger increases in GMTs. Only one of 17 viremic patients at HAART initiation had viremia at 24-month follow-up. CONCLUSION: HAART increases KSHV-specific humoral immune response and clearance of viremia among HIV-infected MSM, consistent with the dramatic protection offered by HAART against Kaposi sarcoma.
Resumo:
Viruses have evolved many distinct strategies to avoid the host's apoptotic response. Here we describe a new family of viral inhibitors (v-FLIPs) which interfere with apoptosis signalled through death receptors and which are present in several gamma-herpesviruses (including Kaposi's-sarcoma-associated human herpesvirus-8), as well as in the tumorigenic human molluscipoxvirus. v-FLIPs contain two death-effector domains which interact with the adaptor protein FADD, and this inhibits the recruitment and activation of the protease FLICE by the CD95 death receptor. Cells expressing v-FLIPs are protected against apoptosis induced by CD95 or by the related death receptors TRAMP and TRAIL-R. The herpesvirus saimiri FLIP is detected late during the lytic viral replication cycle, at a time when host cells are partially protected from CD95-ligand-mediated apoptosis. Protection of virus-infected cells against death-receptor-induced apoptosis may lead to higher virus production and contribute to the persistence and oncogenicity of several FLIP-encoding viruses.
Resumo:
Little is known on a putative effect of vitamin D on CD8+ T cells. Yet, these cells are involved in the immmunopathogenesis of MS. We assessed the cytokine profile of EBV-specific CD8+ T cells of 10 early MS patients and 10 healthy control subjects with or without 1,25(OH)(2)D(3) and found that, with 1,25(OH)(2)D(3), these cells secreted less IFN-γ and TNF-α and more IL-5 and TGF-β. CD4+ T cell depletion or even culture with CD8+ T cells only did not abolish the immunomodulatory effect of 1,25(OH)(2)D(3) on CD8+ T cells, suggesting that 1,25(OH)(2)D(3) can act directly on CD8+ T cells.