102 resultados para Endoplasmic-reticulum Autoantibodies

em Université de Lausanne, Switzerland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose is absorbed through the intestine by a transepithelial transport system initiated at the apical membrane by the cotransporter SGLT-1; intracellular glucose is then assumed to diffuse across the basolateral membrane through GLUT2. Here, we evaluated the impact of GLUT2 gene inactivation on this transepithelial transport process. We report that the kinetics of transepithelial glucose transport, as assessed in oral glucose tolerance tests, was identical in the presence or absence of GLUT2; that the transport was transcellular because it could be inhibited by the SGLT-1 inhibitor phlorizin, and that it could not be explained by overexpression of another known glucose transporter. By using an isolated intestine perfusion system, we demonstrated that the rate of transepithelial transport was similar in control and GLUT2(-/-) intestine and that it was increased to the same extent by cAMP in both situations. However, in the absence, but not in the presence, of GLUT2, the transport was inhibited dose-dependently by the glucose-6-phosphate translocase inhibitor S4048. Furthermore, whereas transport of [(14)C]glucose proceeded with the same kinetics in control and GLUT2(-/-) intestine, [(14)C]3-O-methylglucose was transported in intestine of control but not of mutant mice. Together our data demonstrate the existence of a transepithelial glucose transport system in GLUT2(-/-) intestine that requires glucose phosphorylation and transfer of glucose-6-phosphate into the endoplasmic reticulum. Glucose may then be released out of the cells by a membrane traffic-based pathway similar to the one we previously described in GLUT2-null hepatocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM/HYPOTHESIS: Endoplasmic reticulum (ER) stress, which is involved in the link between inflammation and insulin resistance, contributes to the development of type 2 diabetes mellitus. In this study, we assessed whether peroxisome proliferator-activated receptor (PPAR)β/δ prevented ER stress-associated inflammation and insulin resistance in skeletal muscle cells. METHODS: Studies were conducted in mouse C2C12 myotubes, in the human myogenic cell line LHCN-M2 and in skeletal muscle from wild-type and PPARβ/δ-deficient mice and mice exposed to a high-fat diet. RESULTS: The PPARβ/δ agonist GW501516 prevented lipid-induced ER stress in mouse and human myotubes and in skeletal muscle of mice fed a high-fat diet. PPARβ/δ activation also prevented thapsigargin- and tunicamycin-induced ER stress in human and murine skeletal muscle cells. In agreement with this, PPARβ/δ activation prevented ER stress-associated inflammation and insulin resistance, and glucose-intolerant PPARβ/δ-deficient mice showed increased phosphorylated levels of inositol-requiring 1 transmembrane kinase/endonuclease-1α in skeletal muscle. Our findings demonstrate that PPARβ/δ activation prevents ER stress through the activation of AMP-activated protein kinase (AMPK), and the subsequent inhibition of extracellular-signal-regulated kinase (ERK)1/2 due to the inhibitory crosstalk between AMPK and ERK1/2, since overexpression of a dominant negative AMPK construct (K45R) reversed the effects attained by PPARβ/δ activation. CONCLUSIONS/INTERPRETATION: Overall, these findings indicate that PPARβ/δ prevents ER stress, inflammation and insulin resistance in skeletal muscle cells by activating AMPK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many inflammatory and infectious diseases are characterized by the activation of signaling pathways steaming from the endoplasmic reticulum (ER). These pathways, primarily associated with loss of ER homeostasis, are emerging as key regulators of inflammation and infection. Recent advances shed light on the mechanisms linking ER-stress and immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Les particules de HDL (High Density Lipoproteins) ont des fonctions très diverses notamment anti-inflamatoires, anti-apoptotiques ou anti-oxydatives. Chez les patients diabétiques, les niveaux de HDLs sont bas, les prédisposants ainsi à un risque élévé à développer une maladie cardiovasculaire. Sachant que le s HDLs ont également un effet protecteur sur la cellule beta, le but de cette étude est dinvestigué les mécanismes moléculaires de cette protection contre le stress du réticulum, stress qui contriubue au développement du diabéte de type 2. Résultats: La thapsigargine et la tunicamycine induisent lapoptose en induisant un stress dans le réticulum endoplasmique (RE) par un mauvais repliement des protéines dans le RE, ainsi que l'activation de l'UPR (Unfolded Protein Respons) avec trois voies communes de signalisation intracellulaire (IRE1, PREK et ATF6). Ces voix veillent tout d'abord à augmenter la capacité de repliement des protéines et le cas échéant à lapoptose. Nos résultats montrent que les HDLs sont capable d'inhuber lapoptose induite par la thapsigargine et la tunicamycine dans les MIN6. Dans le cas du traitement avec la thapsigargine, plusieurs marqueurs des voix UPR sont bloqués en présence des HDLs, suggérant que l'effet anti-apoptotiques des HDLs s'exerce au niveau ou en amont du RE. Les HDLS par contre ne bloquent par la sortie de calcium du RE induite par la thapsigargine ce qui indique que les HDLs n'interfèrent pas avec l'action de cette drogue sur sa cible (SERCA). Dans le cas de la la tunicamycine, les HDLs ne bloquent pas, ou très légèrement, l'activation des voix de l'UPR. La protection induite par les HDLs contre la mort engendrée par la tunicamycine s'sexerce dont apparement en aval de l'UPR et reste à être déterminer. Conclusions: Nos données suggérent que les HDLs sont capable de protéger la cellule beta contre le stress du réticulum mais apparement de façon différente selon les modalités d'inductions de ce stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The endoplasmic reticulum (ER) orchestrates the production of membrane-bound and secreted proteins. However, its capacity to process the synthesis and folding of protein is limited. Protein overload and the accumulation of misfolded proteins in the ER trigger an adaptive response known as the ER-stress response that is mediated by specific ER-anchored signaling pathways. This response regulates cell functions aimed at restoring cellular homeostasis or at promoting apoptosis of irreparably damaged cells. Activation or deregulation of ER-signaling pathways has been associated with various diseases including cancer. Here we discuss how tumors engage ER-signaling pathways to promote tumorigenesis and how manipulation of this process by anticancer drugs may contribute to cancer treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many inflammatory and infectious diseases are characterized by the activation of signaling pathways steaming from the endoplasmic reticulum (ER). These pathways, primarily associated with loss of ER homeostasis, are emerging as key regulators of inflammation and infection. Recent advances shed light on the mechanisms linking ER-stress and immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SummaryMulticellular organisms have evolved an immune system in order to cope with the constant threats they are facing. Foreign pathogens or endogenous danger signals released by injured or dying host cells can be readily detected through a set of germline- encoded pattern-recognition receptors. The NOD-like receptors are a cytoplasmic family of pattern-recognition receptors that have recently attracted considerable attention due to their ability to form inflammasomes, which are molecular complexes responsible for the activation of caspase-1 and the subsequent processing of the pro¬inflammatory cytokines IL-IB and 11-18 into their mature, bioactive form.In this study, we describe a novel pro-inflammatory signaling pathway, whereby the endoplasmic reticulum promotes inflammation through activation of the NLRP3 inflammasome. This was shown to be independent of the classical endoplasmic reticulum stress response pathway constituted by the effectors IREla, PERK and ATF6a. In keeping with other known NLRP3 activators, generation of reactive oxygen species and potassium efflux were required. We also provide evidence that calcium signaling is critical to this pathway, and possibly integrates signaling triggered by various NLRP3 inflammasome activators. Moreover, the mitochondrial channel VDAC1 was instrumental in mediating this response. We thus propose that the endoplasmic reticulum acts as an integrator of stress and is able to activate the mitochondria in a calcium-dependent manner in order to promote NLRP3 inflammasome activation in response to a wide range of activators.Given the role played by inflammation in the pathogenesis of atherosclerosis, we decided to investigate a possible role for the NLRP3 inflammasome in the progression of the disease. Using an ApoE mouse model, we find that deficiency in the NLRP3 inflammasome components NLRP3, ASC or Caspase-1 does not impair atherosclerosis progression, nor does it impact plaque stability. While previous studies have clearly shown a role for the interleukin-1 family of ligands in atherosclerosis, our results suggest that its contribution might be more complex than previously appreciated, and further research is thus warranted in this field.RésuméLes organismes multicellulaires ont développé un système immunitaire pour faire face aux menaces qui les entourent. Des pathogènes étrangers ou des signaux de danger relâchés par des cellules de l'hôte en détresse peuvent être rapidement détectés via un assemblage de récepteurs spécifiques qui sont présents dès la naissance. Certains membres de la famille de récepteurs NOD ont récemment attiré beaucoup d'attention au vu de leur capacité à former des inflammasomes, complexes moléculaires responsables de l'activation de la easpase-1 et de la maturation des cytokines pro-inflammatoires IL- 1β et IL-18 en leur forme bioactive.Dans cette étude, nous décrivons une nouvelle voie de signalisation pro-inflammatoire, par laquelle le réticulum endoplasmique induit l'inflammation via l'activation de l'inflammasome NLRP3. Cette voie est indépendante de la voie classique de réponse au stress du réticulum endoplasmique, qui comprend les effecteurs IRE1, PERK et ATF6. Comme pour d'autres activateurs de NLRP3, la génération de radicaux libres d'oxygène ainsi que Γ efflux de potassium sont requis. Nous montrons également que le calcium joue un rôle critique dans cette voie, et intègre possiblement la signalisation provoquée par divers activateurs de l'inflammasome NLRP3. De plus, le canal mitochondrial VDAC1 est essentiel dans cette réponse. Nous proposons donc que le réticulum endoplasmique agit comme un intégrateur de stress, activant la mitochondrie d'une façon calcium-dépendante pour promouvoir l'activation de l'inflammasome NLRP3 en réponse à divers activateurs.Au vu du rôle joué par l'inflammation dans la pathogenèse de l'athérosclérose, nous avons étudié un possible rôle pour l'inflammasome NLRP3 dans la progression de la maladie. Dans un modèle de souris ApoE, l'absence des composants de l'inflammasome NLRP3 que sont NLRP3, ASC et Caspase-1 n'influence pas la progression des plaques ni leur stabilité. Alors que d'autres études ont démontré un rôle pour les membres de la famille de l'interleukine-1 dans l'athérosclérose, nos résultats suggèrent que leur contribution pourrait être plus complexe que précédemment apprécié, et d'autres recherches dans ce domaine sont donc nécessaires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endoplasmic reticulum (ER) orchestrates the production of membrane-bound and secreted proteins. However, its capacity to process the synthesis and folding of protein is limited. Protein overload and the accumulation of misfolded proteins in the ER trigger an adaptive response known as the ER-stress response that is mediated by specific ER-anchored signaling pathways. This response regulates cell functions aimed at restoring cellular homeostasis or at promoting apoptosis of irreparably damaged cells. Activation or deregulation of ER-signaling pathways has been associated with various diseases including cancer. Here we discuss how tumors engage ER-signaling pathways to promote tumorigenesis and how manipulation of this process by anticancer drugs may contribute to cancer treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Chronic endoplasmic reticulum (ER) stress contributes to the apoptotic cell death in the myocardium, thereby playing a critical role in the development of cardiomyopathy. ER stress has been reported to be induced after high-fat diet feeding in mice and also after saturated fatty acid treatment in vitro. Therefore, since several studies have shown that peroxisome proliferator-activated receptor (PPAR)β/δ inhibits ER stress, the main goal of this study consisted in investigating whether activation of this nuclear receptor was able to prevent lipid-induced ER stress in cardiac cells. METHODS AND RESULTS: Wild-type and transgenic mice with reduced PPARβ/δ expression were fed a standard diet or a high-fat diet for two months. For in vitro studies, a cardiomyocyte cell line of human origin, AC16, was treated with palmitate and the PPARβ/δ agonist GW501516. Our results demonstrate that palmitate induced ER stress in AC16 cells, a fact which was prevented after PPARβ/δ activation with GW501516. Interestingly, the effect of GW501516 on ER stress occurred in an AMPK-independent manner. The most striking result of this study is that GW501516 treatment also upregulated the protein levels of beclin 1 and LC3II, two well-known markers of autophagy. In accordance with this, feeding on a high-fat diet or suppression of PPARβ/δ in knockout mice induced ER stress in the heart. Moreover, PPARβ/δ knockout mice also displayed a reduction in autophagic markers. CONCLUSION: Our data indicate that PPARβ/δ activation might be useful to prevent the harmful effects of ER stress induced by saturated fatty acids in the heart by inducing autophagy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innate immune system has evolved the capacity to detect specific pathogens and to interrogate cell and tissue integrity in order to mount an appropriate immune response. Loss of homeostasis in the endoplasmic reticulum (ER) triggers the ER-stress response, a hallmark of many inflammatory and infectious diseases. The IRE1/XBP1 branch of the ER-stress signaling pathway has been recently shown to regulate and be regulated by innate immune signaling pathways in both the presence and absence of ER-stress. By contrast, innate immune pathways negatively affect the activation of two other branches of the ER-stress response as evidenced by reduced expression of the pro-apoptotic transcription factor CHOP. Here we will discuss how innate immune pathways and ER-signaling intersect to regulate the intensity and duration of innate immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated circulating concentrations in modified LDL-cholesterol particles (e.g. oxidised LDL) and low levels in HDL increase not only the risk for diabetic patients to develop cardiovascular diseases but also may contribute to development and progression of diabetes by directly having adverse effects on β-cells. Chronic exposure of β-cells to 2 mM human oxidised LDL-cholesterol (oxLDL) increases the rate of apoptosis, reduce insulin biosynthesis and the secretory capacity of the cells in response to nutrients. In line with the protective role, HDL efficiently antagonised the harmful effects of ox- LDL, suggesting that low levels of HDL would be inefficient to protect β-cells against oxLDL attack in patients. Activation of endoplasmic reticulum (ER) stress is pointed out to contribute to β-cell dysfunction elicited by environmental stressors. In this study we investigated whether activation of ER stress is required for oxLDL to mediate detrimental effects on β-cells and we tested the potential antagonist properties of HDL: The mouse MIN6 insulin-secreting cells were cultured with 2 mM of LDL-cholesterol preparation (native or in vitro oxidized) in the presence or absence of 1 mM of HDL-cholesterol or the ER stress inhibitor 4-phenylbutyrate (4-PBA): Prolonged exposure of MIN6 cells to 2 mM oxLDL-cholesterol for 48 hours led to an increase in expression of ER stress markers such as ATF4, CHOP and p58 and stimulated the splicing of XBP-1 whereas, induction of these markers was not observable in the cells cultured with native LDL. Treatment of the cells with the 4-PBA chemical chaperone molecule efficiently blocked activation of the ER stress markers induced by oxLDL. The latter mediates β-cell dysfunction and apoptosis by diminishing the expression of islet brain 1 (IB1) and Bcl2. The levels of these two proteins were preserved in the cells that were co-treated with oxLDL and the 4-PBA. Consistent with this result we found that blockade of ER stress activation alleviated the loss of insulin synthesis and abolished apoptosis evoked by oxLDL. However incubation of the cells with 4-PBA did not prevent impairment of insulin secretion elicited by oxLDL, indicating that ER stress is not responsible for the oxLDL-mediated defect of insulin secretion. Co-incubation of the cells with HDL mimicked the effects of 4-PBA on the expression of IB1 and Blc2 and thereby counteracted oxLDL attacks on insulin synthesis and cell survivals. We found that HDL efficiently inhibited activation of the ER stress mediated by oxLDL: These data highlight the contribution of the ER stress in the defects of insulin synthesis and cell survivals induced by oxLDL and emphasize the potent role of HDL to counter activation of the oxLDL-mediated ER-stress activation: