81 resultados para Endogenous rhythm
em Université de Lausanne, Switzerland
Resumo:
Many studies have provided evidence that prey adjust their behaviour to adaptively balance the fitness effects of reproduction and predation risk. Nocturnal terrestrial animals should deal with a range of environmental conditions during the reproductive season at the breeding sites, including a variable amount of natural ambient light. High degrees of illumination are expected to minimize those behaviours that might increase the animal detection by predators. Therefore, under habitat variable brightness conditions and in different ecosystems, the above mentioned behaviours are expected to depend on the variation in predation risk. Although moon effects on amphibian biology have been recognized, the direction of this influence is rather controversial with evidences of both increased and depressed activity under full moon. We tested in four nocturnal amphibian species (Hyla intermedia, Rana dalmatina, Rana italica, Salamandrina perspicillata) the effects of different (i) light conditions and (ii) habitats (open land vs. dense forest) on the reproductive phenology. Our results showed that the effects of the lunar cycle on the study species are associated with the change in luminosity, and there is no evidence of an endogenous rhythm controlled by biological clocks. The habitat type conditioned the amphibian reproductive strategy in relation to moon phases. Open habitat breeders (e. g., ponds with no canopy cover) strongly avoided conditions with high brightness, whereas forest habitat breeders were apparently unaffected by the different moon phases. Indeed, for all the studied species no effects of the moon phase itself on the considered metrics were found. Rather, the considered amphibian species seem to be conditioned mainly by moonlight irrespective of the moon phase. The two anurans spawning in open habitat apparently adjust their oviposition timing by balancing the fitness effects of the risk to be detected by predators and the reproduction.
Resumo:
We previously established that exogenous adenosine (ADO) induces transient arrhythmias in the developing heart via the adenosine A1 receptor (A1AR) and downstream activation of NADPH oxidase/ERK and PLC/PKC pathways. Here, we investigated the mechanisms by which accumulation of endogenous ADO and its derived compound inosine (INO) in the interstitial compartment induce rhythm and conduction troubles. The validated model of the spontaneously beating heart obtained from 4-day-old chick embryos was used. Quantitative RT-PCR showed that enzymes involved in ADO and INO metabolism (CD39, CD73 and eADA) as well as equilibrative (ENT1, -3, -4) and concentrative (CNT3) nucleoside transporters were differentially expressed in atria, ventricle and outflow tract. Inactivation of ENTs by dipyridamole, 1) increased myocardial ADO level, 2) provoked atrial arrhythmias and atrio-ventricular blocks (AVB) in 70% of the hearts, 3) prolonged P wave and QT interval without altering contractility, and 4) increased ERK2 phosphorylation. Blockade of CD73-mediated phosphohydrolysis of AMP to ADO, MEK/ERK pathway inhibition or A1AR inhibition prevented these arrhythmias. Exposure to exogenous INO also caused atrial ectopy associated with AVB and ERK2 phosphorylation which were prevented by A1AR or A2AAR antagonists exclusively or by MEK/ERK inhibitor. Inhibition of ADA-mediated conversion of ADO to INO increased myocardial ADO and decreased INO as expected, but slightly augmented heart rate variability without provoking AVB. Thus, during cardiogenesis, disturbances of nucleosides metabolism and transport, can lead to interstitial accumulation of ADO and INO and provoke arrhythmias in an autocrine/paracrine manner through A1AR and A2AAR stimulation and ERK2 activation.
Resumo:
Background: Earlier contributions have documented significant changes in sensory, attention-related endogenous event-related potential (ERP) components and θ band oscillatory responses during working memory activation in patients with schizophrenia. In patients with first-episode psychosis, such studies are still scarce and mostly focused on auditory sensory processing. The present study aimed to explore whether subtle deficits of cortical activation are present in these patients before the decline of working memory performance. Methods: We assessed exogenous and endogenous ERPs and frontal θ event-related synchronization (ERS) in patients with first-episode psychosis and healthy controls who successfully performed an adapted 2-back working memory task, including 2 visual n-backworking memory tasks as well as oddball detection and passive fixation tasks. Results: We included 15 patients with first-episode psychosis and 18 controls in this study. Compared with controls, patients with first-episode psychosis displayed increased latencies of early visual ERPs and phasic θ ERS culmination peak in all conditions. However, they also showed a rapid recruitment of working memory-related neural generators, even in pure attention tasks, as indicated by the decreased N200 latency and increased amplitude of sustained θ ERS in detection compared with controls. Limitations: Owing to the limited sample size, no distinction was made between patients with first-episode psychosis with positive and negative symptoms. Although we controlled for the global load of neuroleptics, medication effect cannot be totally ruled out. Conclusion: The present findings support the concept of a blunted electroencephalographic response in patients with first-episode psychosis who recruit the maximum neural generators in simple attention conditions without being able to modulate their brain activation with increased complexity of working memory tasks.
Resumo:
The detection of testosterone abuse in sports is routinely achieved through the 'steroidal module' of the Athlete Biological Passport by GC-MS(/MS) quantification of selected endogenous anabolic androgenic steroids (EAAS) from athletes' urines. To overcome some limitations of the "urinary steroid profile" such as the presence of confounding factors (ethnicity, enzyme polymorphism, bacterial contamination, and ethanol), ultrahigh performance liquid chromatography (UHPLC) measurements of blood concentrations of testosterone, its major metabolites, and precursors could represent an interesting and complementary strategy. In this work, two UHPLC-MS/MS methods were developed for the quantification of testosterone and related compounds in human serum, including major progestogens, corticoids, and estrogens. The validated methods were then used for the analyses of serum samples collected from 19 healthy male volunteers after oral and transdermal testosterone administration. Results from unsupervised multiway analysis allowed variations of target analytes to be assessed simultaneously over a 96-h time period. Except for alteration of concentration values due to the circadian rhythm, which concerns mainly corticosteroids, DHEA, and progesterone, significant variations linked to the oral and transdermal testosterone administration were observed for testosterone, DHT, and androstenedione. As a second step of analysis, the longitudinal monitoring of these biomarkers using intra-individual thresholds showed, in comparison to urine, significant improvements in the detection of testosterone administration, especially for volunteers with del/del genotype for phase II UGT2B17 enzyme, not sensitive to the main urinary marker, T/E ratio. A substantial extension of the detection window after transdermal testosterone administration was also observed in serum matrix. The longitudinal follow-up proposed in this study represents a first example of 'blood steroid profile' in doping control analysis, which can be proposed in the future as a complement to the 'urinary module' for improving steroid abuse detection capabilities.
Resumo:
BACKGROUND AND OBJECTIVES: The determination of the carbon isotope ratio in androgen metabolites has been previously shown to be a reliable, direct method to detect testosterone misuse in the context of antidoping testing. Here, the variability in the 13C/12C ratios in urinary steroids in a widely heterogeneous cohort of professional soccer players residing in different countries (Argentina, Italy, Japan, South Africa, Switzerland and Uganda) is examined. METHODS: Carbon isotope ratios of selected androgens in urine specimens were determined using gas chromatography/combustion/isotope ratio mass spectrometry (GC-C-IRMS). RESULTS: Urinary steroids in Italian and Swiss populations were found to be enriched in 13C relative to other groups, reflecting higher consumption of C3 plants in these two countries. Importantly, detection criteria based on the difference in the carbon isotope ratio of androsterone and pregnanediol for each population were found to be well below the established threshold value for positive cases. CONCLUSIONS: The results obtained with the tested diet groups highlight the importance of adapting the criteria if one wishes to increase the sensitivity of exogenous testosterone detection. In addition, confirmatory tests might be rendered more efficient by combining isotope ratio mass spectrometry with refined interpretation criteria for positivity and subject-based profiling of steroids.
Resumo:
The epithelial sodium channel (ENaC) is preferentially assembled into heteromeric alphabetagamma complexes. The alpha and gamma (not beta) subunits undergo proteolytic cleavage by endogenous furin-like activity correlating with increased ENaC function. We identified full-length subunits and their fragments at the cell surface, as well as in the intracellular pool, for all homo- and heteromeric combinations (alpha, beta, gamma, alphabeta, alphagamma, betagamma, and alphabetagamma). We assayed corresponding channel function as amiloride-sensitive sodium transport (I(Na)). We varied furin-mediated proteolysis by mutating the P1 site in alpha and/or gamma subunit furin consensus cleavage sites (alpha(mut) and gamma(mut)). Our findings were as follows. (i) The beta subunit alone is not transported to the cell surface nor cleaved upon assembly with the alpha and/or gamma subunits. (ii) The alpha subunit alone (or in combination with beta and/or gamma) is efficiently transported to the cell surface; a surface-expressed 65-kDa alpha ENaC fragment is undetected in alpha(mut)betagamma, and I(Na) is decreased by 60%. (iii) The gamma subunit alone does not appear at the cell surface; gamma co-expressed with alpha reaches the surface but is not detectably cleaved; and gamma in alphabetagamma complexes appears mainly as a 76-kDa species in the surface pool. Although basal I(Na) of alphabetagamma(mut) was similar to alphabetagamma, gamma(mut) was not detectably cleaved at the cell surface. Thus, furin-mediated cleavage is not essential for participation of alpha and gamma in alphabetagamma heteromers. Basal I(Na) is reduced by preventing furin-mediated cleavage of the alpha, but not gamma, subunits. Residual current in the absence of furin-mediated proteolysis may be due to non-furin endogenous proteases.
Resumo:
Life on earth is subject to the repeated change between day and night periods. All organisms that undergo these alterations have to anticipate consequently the adaptation of their physiology and possess an endogenous periodicity of about 24 hours called circadian rhythm from the Latin circa (about) and diem (day). At the molecular level, virtually all cells of an organism possess a molecular clock which drives rhythmic gene expression and output functions. Besides altered rhythmicity in constant conditions, impaired clock function causes pathophysiological conditions such as diabetes or hypertension. These data unveil a part of the mechanisms underlying the well-described epidemiology of shift work and highlight the function of clock-driven regulatory mechanisms. The post-translational modification of proteins by the ubiquitin polypeptide is a central mechanism to regulate their stability and activity and is capital for clock function. Similarly to the majority of biological processes, it is reversible. Deubiquitylation is carried out by a wide variety of about ninety deubiquitylating enzymes and their function remains poorly understood, especially in vivo. This class of proteolytic enzymes is parted into five families including the Ubiquitin-Specific Proteases (USP), which is the most important with about sixty members. Among them, the Ubiquitin-Specific Protease 2 (Usp2) gene encodes two protein isoforms, USP2-45 and USP2-69. The first is ubiquitously expressed under the control of the circadian clock and displays all features of core clock genes or its closest outputs effectors. Additionally, Usp2-45 was also found to be induced by the mineralocorticoid hormone aldosterone and thought to participate in Na+ reabsorption and blood pressure regulation by Epithelial Na+ Channel ENaC in the kidneys. During my thesis, I aimed to characterize the role of Usp2 in vivo with respect to these two areas, by taking advantage of a total constitutive knockout mouse model. In the first project I aimed to validate the role of USP2-45 in Na+ homeostasis and blood pressure regulation by the kidneys. I found no significant alterations of diurnal Na+ homeostasis and blood pressure in these mice, indicating that Usp2 does not play a substantial role in this process. In urine analyses, we found that our Usp2-KO mice are actually hypercalciuric. In a second project, I aimed to understand the causes of this phenotype. I found that the observed hypercalciuria results essentially from intestinal hyperabsorption. These data reveal a new role for Usp2 as an output effector of the circadian clock in dietary Ca2+ metabolism in the intestine.
Resumo:
Research has suggested that exogenous opioid substances can have direct effects on cardiac muscle or influence neurotransmitter release via presynaptic modulation of neuronal inputs to the heart. In the present study, multiple-labelling immunohistochemistry was employed to determine the distribution of endogenous opioid peptides within the guinea-pig heart. Approximately 40% of cardiac ganglion cells contained immunoreactivity for dynorphin A (1-8), dynorphin A (1-17) and dynorphin B whilst 20% displayed leu-enkephalin immunoreactivity. Different populations of opioid-containing ganglion cells were identified according to the co-existence of opioid immunoreactivity with immunoreactivity for somatostatin and neuropeptide Y. Immunoreactivity for prodynorphin-derived peptides was observed in many sympathetic axons in the heart and was also observed, though to a lesser extent, in sensory axons. Leu-enkephalin immunoreactivity was observed in occasional sympathetic and sensory axons. No immunoreactivity was observed for met-enkephalin-arg-gly-leu or for beta-endorphin. These results demonstrate that prodynorphin-derived peptides are present in parasympathetic, sympathetic and sensory nerves within the heart, but suggest that only the prodynorphin gene is expressed in guinea-pig cardiac nerves. This study has shown that endogenous opioid peptides are well placed to regulate cardiac function via both autonomic and sensory pathways.
Resumo:
To determine the mechanisms that prevent an increase in gluconeogenesis from increasing hepatic glucose output, six healthy women were infused with [1-13C]fructose (22 mumol.kg-1.min-1), somatostatin, insulin, and glucagon. In control experiment, non-13C-enriched fructose was infused at the same rate without somatostatin, and [U-13C]glucose was infused to measure specifically plasma glucose oxidation. Endogenous glucose production (EGP, [6,6-2H]glucose), net carbohydrate oxidation (CHOox, indirect calorimetry), and fructose oxidation (13CO2) were measured. EGP rate did not increase after fructose infusion with (13.1 +/- 1.2 vs. 12.9 +/- 0.3 mumol.kg-1.min-1) and without (10.3 +/- 0.5 vs. 9.7 +/- 0.5 mumol.kg-1.min-1) somatostatin, despite the fact that gluconeogenesis increased. Nonoxidative fructose disposal, corresponding mainly to glycogen synthesis, was threefold net glycogen deposition, the latter calculated as fructose infusion minus CHOox (14.8 +/- 1.1 and 4.3 +/- 2.0 mumol.kg-1.min-1). It is concluded that 1) the mechanism by which EGP remains constant when gluconeogenesis from fructose increases is independent of changes in insulin and 2) simultaneous breakdown and synthesis of glycogen occurred during fructose infusion.
Resumo:
The Athlete Biological Passport (ABP) is an individual electronic document that collects data regarding a specific athlete that is useful in differentiating between natural physiologic variations of selected biomarkers and deviations caused by artificial manipulations. A subsidiary of the endocrine module of the ABP, that which here is called Athlete Steroidal Passport (ASP), collects data on markers of an altered metabolism of endogenous steroidal hormones measured in urine samples. The ASP aims to identify not only doping with anabolic-androgenic steroids, but also most indirect steroid doping strategies such as doping with estrogen receptor antagonists and aromatase inhibitors. Development of specific markers of steroid doping, use of the athlete's previous measurements to define individual limits, with the athlete becoming his or her own reference, the inclusion of heterogeneous factors such as the UDPglucuronosyltransferase B17 genotype of the athlete, the knowledge of potentially confounding effects such as heavy alcohol consumption, the development of an external quality control system to control analytical uncertainty, and finally the use of Bayesian inferential methods to evaluate the value of indirect evidence have made the ASP a valuable alternative to deter steroid doping in elite sports. The ASP can be used to target athletes for gas chromatography/combustion/ isotope ratio mass spectrometry (GC/C/IRMS) testing, to withdraw temporarily the athlete from competing when an abnormality has been detected, and ultimately to lead to an antidoping infraction if that abnormality cannot be explained by a medical condition. Although the ASP has been developed primarily to ensure fairness in elite sports, its application in endocrinology for clinical purposes is straightforward in an evidence-based medicine paradigm.
Resumo:
Tumor-associated macrophages (TAMs) invade the tumor stroma in many cancers, yet their role is incompletely understood. To visualize and better understand these critical cells in tumor progression, we screened a portfolio of rationally selected, injectable agents to image endogenous TAMs ubiquitously in three different cancer models (colon carcinoma, lung adenocarcinoma, and soft tissue sarcoma). AMTA680, a functionally derivatized magneto-fluorescent nanoparticle, labeled a subset of myeloid cells with an "M2" macrophage phenotype, whereas other neighboring cells, including tumor cells and a variety of other leukocytes, remained unlabeled. We further show that AMTA680-labeled endogenous TAMs are not altered and can be tracked noninvasively at different resolutions and using various imaging modalities, e.g., fluorescence molecular tomography, magnetic resonance imaging, and multiphoton and confocal intravital microscopy. Quantitative assessment of TAM distribution and activity in vivo identified that these cells cluster in delimited foci within tumors, show relatively low motility, and extend cytoplasmic protrusions for prolonged physical interactions with neighboring tumor cells. Noninvasive imaging can also be used to monitor TAM-depleting regimen quantitatively. Thus, AMTA680 or related cell-targeting agents represent appropriate injectable vehicles for in vivo analysis of the tumor microenvironment.
Resumo:
Madin-Darby canine kidney cells (MDCK) were transfected with a cDNA encoding the glycosyl-phosphatidylinositol (GPI)-anchored protein mouse Thy-1 in order to study the steady-state surface distribution of exogenous and endogenous GPI-linked proteins. Immunofluorescence of transfected cells grown on collagen-coated coverslips showed that expression of Thy-1 was variable throughout the epithelium, with some cells expressing large amounts of Thy-1 adjacent to very faintly staining cells. Selective surface iodination of cells grown on collagen-coated or uncoated transwell filters followed by immunoprecipitation of Thy-1 demonstrated that all the Thy-1 was present exclusively in the apical plasma membrane. Although cells grown on uncoated filters had much smaller amounts of Thy-1, it was consistently localized on the apical surfaces. Immunofluorescent localization of Thy-1 on 1 micron frozen sections of filter-grown cells demonstrated that all the Thy-1 was on the apical surface and there was no detectable intracellular pool. Phosphatidylinositol-specific phospholipase C digestion of intact iodinated monolayers released Thy-1 only into the apical medium, indicating that Thy-1 was processed normally in transfected cells and was anchored by a GPI-tail. In agreement with previous findings, endogenous GPI-linked proteins were found only on the apical plasma membrane. These results suggest that there is a common mechanism for sorting and targeting of GPI-linked proteins in polarized epithelial cells.