112 resultados para Empty space
em Université de Lausanne, Switzerland
Resumo:
Aim. To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host-plant as a case study. Location. The Alps. Methods. We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host-plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from the shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern. Results. Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice-based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago. Main conclusions. Species-specific interactions are scarce in alpine habitats because glacial cycles have limited opportunities for coevolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host-dependence of the beetle that locally limits the establishment of dispersing insects.
Resumo:
The generic concept of the artificial meteorite experiment STONE is to fix rock samples bearing microorganisms on the heat shield of a recoverable space capsule and to study their modifications during atmospheric re-entry. The STONE-5 experiment was performed mainly to answer astrobiological questions. The rock samples mounted on the heat shield were used (i) as a carrier for microorganisms and (ii) as internal control to verify whether physical conditions during atmospheric re-entry were comparable to those experienced by "real" meteorites. Samples of dolerite (an igneous rock), sandstone (a sedimentary rock), and gneiss impactite from Haughton Crater carrying endolithic cyanobacteria were fixed to the heat shield of the unmanned recoverable capsule FOTON-M2. Holes drilled on the back side of each rock sample were loaded with bacterial and fungal spores and with dried vegetative cryptoendoliths. The front of the gneissic sample was also soaked with cryptoendoliths. <p>The mineralogical differences between pre- and post-flight samples are detailed. Despite intense ablation resulting in deeply eroded samples, all rocks in part survived atmospheric re-entry. Temperatures attained during re-entry were high enough to melt dolerite, silica, and the gneiss impactite sample. The formation of fusion crusts in STONE-5 was a real novelty and strengthens the link with real meteorites. The exposed part of the dolerite is covered by a fusion crust consisting of silicate glass formed from the rock sample with an admixture of holder material (silica). Compositionally, the fusion crust varies from silica-rich areas (undissolved silica fibres of the holder material) to areas whose composition is "basaltic". Likewise, the fusion crust on the exposed gneiss surface was formed from gneiss with an admixture of holder material. The corresponding composition of the fusion crust varies from silica-rich areas to areas with "gneiss" composition (main component potassium-rich feldspar). The sandstone sample was retrieved intact and did not develop a fusion crust. Thermal decomposition of the calcite matrix followed by disintegration and liberation of the silicate grains prevented the formation of a melt.</p> <p>Furthermore, the non-exposed surface of all samples experienced strong thermal alterations. Hot gases released during ablation pervaded the empty space between sample and sample holder leading to intense local heating. The intense heating below the protective sample holder led to surface melting of the dolerite rock and to the formation of calcium-silicate rims on quartz grains in the sandstone sample. (c) 2008 Elsevier Ltd. All rights reserved.</p>
Resumo:
The use of cages of different material and shapes for cervical discectomy with fusion (ACDF) has increased during the last few years. The use of additional osteogenic material is controversial. We prospectively evaluated an empty, Plasmapore-covered titanium cage (PCTC) in 45 patients undergoing 58 ACDFs. Patients were evaluated using standard clinical and radiological criteria. Good to excellent outcome was achieved in 93%, 78% and 75% after 3, 12 and 48 months, respectively. Sixty-five percent of patients could resume their prior work after 48 months. Disc space height and lordosis could be preserved in all cases. Two percent of the treated levels showed subsidence and 2% increased segmental motion. There were no procedure-related complications. Implantation of an empty PCTC after microsurgical anterior cervical discectomy is a safe procedure with good results and low incidence of complications. Disc height and lordosis can be preserved with low incidence of subsidence and good fusion rates.
Resumo:
This thesis explores the importance of literary New York City in the urban narratives of Edith Wharton and Anzia Yezierska. It specifically looks at the Empire City of the Progressive Period when the concept of the city was not only a new theme but also very much a typical American one which was as central to the American experience as had been the Western frontier. It could be argued, in fact, that the American city had become the new frontier where modern experiences like urbanization, industrialization, immigration, and also women's emancipation and suffrage, caused all kinds of sensations on the human scale from smoothly lived assimilation and acculturation to deeply felt alienation because of the constantly shifting urban landscape. The developing urban space made possible the emergence of new female literary protagonists like the working girl, the reformer, the prostitute, and the upper class lady dedicating her life to 'conspicuous consumption'. Industrialization opened up city space to female exploration: on the one hand, upper and middle class ladies ventured out of the home because of the many novel urban possibilities, and on the other, lower class and immigrant girls also left their domestic sphere to look for paid jobs outside the home. New York City at the time was not only considered the epicenter of the world at large, it was also a city of great extremes. Everything was constantly in flux: small brownstones made way for ever taller skyscrapers and huge waves of immigrants from Europe pushed native New Yorkers further uptown on the island, adding to the crowdedness and intensity of the urban experience. The city became a polarized urban space with Fifth Avenue representing one end of the spectrum and the Lower East Side the other. Questions of space and the urban home greatly mattered. It has been pointed out that the city setting functions as an ideal means for the display of human nature as well as social processes. Narrative representations of urban space, therefore, provide a similar canvas for a protagonist's journey and development. From widely diverging vantage points both Edith Wharton and Anzia Yezierska thus create a polarized city where domesticity is a primal concern. Looking at all of their New York narratives by close readings of exterior and interior city representations, this thesis shows how urban space greatly affects questions of identity, assimilation, and alienation in literary protagonists who cannot escape the influence of their respective urban settings. Edith Wharton's upper class "millionaire" heroines are framed and contained by the city interiors of "old" New York, making it impossible for them to truly participate in the urban landscape in order to develop outside of their 'Gilt Cages'. On the other side are Anzia Yezierska's struggling "immigrant" protagonists who, against all odds, never give up in their urban context of streets, rooftops, and stoops. Their New York City, while always challenging and perpetually changing, at least allows them perspectives of hope for a 'Promised Land' in the making. Central for both urban narrative approaches is the quest for a home as an architectural structure, a spiritual resting place, and a locus for identity forming. But just as the actual city embraces change, urban protagonists must embrace change also if they desire to find fulfillment and success. That this turns out to be much easier for Anzia Yezierska's driven immigrants rather than for Edith Wharton's well established native New Yorkers is a surprising conclusion to this urban theme.
Resumo:
The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa.
Resumo:
Background: Chronic mountain sickness (CMS), which is characterised by hypoxemia, erythrocytosis and pulmonary hypertension, is a major public health problem in high-altitude dwellers. The only existing treatment is descent to low altitude, an option that for social reasons almost never exists. Sleep disordered breathing may represent an underlying mechanism. We recently found that in mountaineers increasing the respiratory dead space markedly improves sleep disordered breathing. The aim of the present study was to assess the effects of this procedure on sleep disordered breathing in patients with CMS. Methods: In 10 male Bolivian high-altitude dwellers (mean ± SD age, 59 ± 9 y) suffering from CMS (haemoglobin >20 g/L) full night sleep recordings (Embletta, RespMed) were obtained in La Paz (3600 m). In random order, one night was spent with a 500 ml increase in dead space through a custom designed full face mask and the other night without it. Exclusion criteria were: secondary erythrocytosis, smoking, drug intake, acute infection, cardio- pulmonary or neurologic disease and travelling to low altitude in the preceding 6 months. Results: The major new finding was that added dead space dramatically improved sleep disordered breathing in patients suffering from CMS. The apnea/hypopnea index decreased by >50% (from 34.5 ± 25.0 to 16.8 ± 14.9, P = 0.003), the oxygen desaturation index decreased from 46.2 ± 23.0 to 27.2 ± 20.0 (P = 0.0004) and hypopnea index from 28.8 ± 20.9 to 16.3 ± 14.0 (P = 0.01), whereas nocturnal oxygen saturation increased from 79.8 ± 3.6 to 80.9 ± 3.0% (P = 0.009). The procedure was easily accepted and well tolerated. Conclusion: Here, we show for the very first time that an increase in respiratory dead space through a fitted mask dramatically improves nocturnal breathing in high-altitude dwellers suffering from CMS. We speculate that when used in the long-term, this procedure will improve erythrocytosis and pulmonary hypertension and offer an inexpensive and easily implementable treatment for this major public health problem.
Resumo:
The human auditory system is comprised of specialized but interacting anatomic and functional pathways encoding object, spatial, and temporal information. We review how learning-induced plasticity manifests along these pathways and to what extent there are common mechanisms subserving such plasticity. A first series of experiments establishes a temporal hierarchy along which sounds of objects are discriminated along basic to fine-grained categorical boundaries and learned representations. A widespread network of temporal and (pre)frontal brain regions contributes to object discrimination via recursive processing. Learning-induced plasticity typically manifested as repetition suppression within a common set of brain regions. A second series considered how the temporal sequence of sound sources is represented. We show that lateralized responsiveness during the initial encoding phase of pairs of auditory spatial stimuli is critical for their accurate ordered perception. Finally, we consider how spatial representations are formed and modified through training-induced learning. A population-based model of spatial processing is supported wherein temporal and parietal structures interact in the encoding of relative and absolute spatial information over the initial ∼300ms post-stimulus onset. Collectively, these data provide insights into the functional organization of human audition and open directions for new developments in targeted diagnostic and neurorehabilitation strategies.
Resumo:
Water transport in wood is vital for the survival of trees. With synchrotron radiation X-ray tomographic microscopy (SRXTM), it has become possible to characterize and quantify the three-dimensional (3D) network formed by vessels that are responsible for longitudinal transport. In the present study, the spatial size dependence of vessels and the organization inside single growth rings in terms of vessel-induced porosity was studied by SRXTM. Network characteristics, such as connectivity, were deduced by digital image analysis from the processed tomographic data and related to known complex network topologies.
Resumo:
Real-world objects are often endowed with features that violate Gestalt principles. In our experiment, we examined the neural correlates of binding under conflict conditions in terms of the binding-by-synchronization hypothesis. We presented an ambiguous stimulus ("diamond illusion") to 12 observers. The display consisted of four oblique gratings drifting within circular apertures. Its interpretation fluctuates between bound ("diamond") and unbound (component gratings) percepts. To model a situation in which Gestalt-driven analysis contradicts the perceptually explicit bound interpretation, we modified the original diamond (OD) stimulus by speeding up one grating. Using OD and modified diamond (MD) stimuli, we managed to dissociate the neural correlates of Gestalt-related (OD vs. MD) and perception-related (bound vs. unbound) factors. Their interaction was expected to reveal the neural networks synchronized specifically in the conflict situation. The synchronization topography of EEG was analyzed with the multivariate S-estimator technique. We found that good Gestalt (OD vs. MD) was associated with a higher posterior synchronization in the beta-gamma band. The effect of perception manifested itself as reciprocal modulations over the posterior and anterior regions (theta/beta-gamma bands). Specifically, higher posterior and lower anterior synchronization supported the bound percept, and the opposite was true for the unbound percept. The interaction showed that binding under challenging perceptual conditions is sustained by enhanced parietal synchronization. We argue that this distributed pattern of synchronization relates to the processes of multistage integration ranging from early grouping operations in the visual areas to maintaining representations in the frontal networks of sensory memory.
Resumo:
Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.
Resumo:
Les techniques utilisant la chaise vide ou le dialogue sur deux chaises sont des moyens qui permettent le déploiement de techniques expérientielles dans différentes formes de psychothérapie. Cet article vise à retracer l'origine de ces techniques dans les courants Gestalt et centré sur la personne, pour ensuite présenter quelques développements actuels au sein des thérapies expérientielles au sens large. Les techniques présentées sont classées selon leur finalité primordiale, à savoir : leur utilisation dans le but de clarifier et de construire du sens et leur utilisation dans le but de modifier des déterminants internes du problème. Les techniques suivantes sont brièvement présentées, illustrées par des vignettes cliniques et discutées : élaboration du conflit interne ; élaboration de l'auto-interruption ; élaboration d'un conflit avec une personne significative ; dialogue d'apaisement ; éléments cognitifs du jeu de rôle avec une seule personne ; éléments affectifs du jeu de rôle avec une seule personne. Nous discutons les travaux de recherche mettant en évidence l'efficacité et l'effectivité de ces techniques et terminons par des réflexions au sujet de l'indication différentielle de ces techniques, avec une réflexion au sujet des perspectives cliniques et de recherche. © 2013 Publié par Elsevier Masson SAS pour la Société française de psychologie.