16 resultados para Electric conductance
em Université de Lausanne, Switzerland
Resumo:
Emotion regulation plays a key role in mental health and psychopathology. Therefore, it seems important to develop effective forms of emotion regulation. Implementation intentions are if-then plans that help people attain their self-regulatory goals. Perspective-taking and response-focused implementation intentions have been shown to reduce feelings of unpleasantness and arousal, respectively, in response to briefly presented disgusting pictures. The present study addressed the open research questions whether forming these types of implementation intentions is effective in regulating affect during prolonged presentation of disgusting pictures, and whether it is associated with changes in physiological arousal. Eighty-one participants viewed disgusting, neutral, and pleasant pictures of 6 s duration under four instructions: the goal intention to not get disgusted, this goal intention furnished with a perspective-taking or a response-focused implementation intention, and no emotion regulation instructions. The dependent variables were ratings of disgust, valence, arousal, and electrodermal activity. Only perspective-taking implementation intention participants significantly reduced their disgust and unpleasantness as compared to goal-intention and control participants. Arousal and skin conductance did not significantly differ between conditions. The effectiveness of response-focused but not perspective-taking implementation intentions seems to be substantially reduced during sustained exposure duration.
T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites.
Resumo:
T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.
Resumo:
To analyze the neural basis of electric taste we performed electrical neuroimaging analyses of event-related potentials (ERPs) recorded while participants received electrical pulses to the tongue. Pulses were presented at individual taste threshold to excite gustatory fibers selectively without concomitant excitation of trigeminal fibers and at high intensity evoking a prickling and, thus, activating trigeminal fibers. Sour, salty and metallic tastes were reported at both intensities while clear prickling was reported at high intensity only. ERPs exhibited augmented amplitudes and shorter latencies for high intensity. First activations of gustatory areas (bilateral anterior insula, medial orbitofrontal cortex) were observed at 70-80ms. Common somatosensory regions were more strongly, but not exclusively, activated at high intensity. Our data provide a comprehensive view on the dynamics of cortical processing of the gustatory and trigeminal portions of electric taste and suggest that gustatory and trigeminal afferents project to overlapping cortical areas.
Resumo:
Purpose: EEG is mandatory in the diagnosis of the epilepsy syndrome. However, its potential as imaging tool is still under estimated. In the present study, we aim to determine the prerequisites of maximal benefit of electric source imaging (ESI) to localize the irritative zone in patients with focal epilepsy. Methods: One hundred fifty patients suffering from focal epilepsy and with minimum 1 year postoperative follow-up were studied prospectively and blinded to the underlying diagnosis. We evaluated the influence of two important factors on sensitivity and specificity of ESI: the number of electrodes (low resolution, LR-ESI: <30 versus high resolution, HR-ESI: 128-256 electrodes), and the use of individual MRI (i-MRI) versus template MRI (t-MRI) as the head model. Findings: ESI had a sensitivity of 85% and a specificity of 87% when HR-ESI with i-MRI was used. Using LR-ESI, sensitivity decreased to 68%, or even 57% when only t-MRI was available. The sensitivity of HR-ESI/i-MRI compared favorably with those of MRI (76%), PET (69%) and ictal/interictal SPECT (64%). Interpretation: This study on a large patient group shows excellent sensitivity and specificity of ESI if 128 EEG channels or more are used for ESI and if the results are coregistered to the patient's individual MRI. Localization precision is as high as or even higher than established brain imagery techniques. HR-ESI appears to be a valuable additional imaging tool, given that larger electrode arrays are easily and rapidly applied with modern EEG equipment and that structural MRI is nearly always available for these patients.
Resumo:
BACKGROUND: The amygdala, hippocampus, medial prefrontal cortex (mPFC) and brain-stem subregions are implicated in fear conditioning and extinction, and are brain regions known to be sexually dimorphic. We used functional magnetic resonance imaging (fMRI) to investigate sex differences in brain activity in these regions during fear conditioning and extinction. METHODS: Subjects were 12 healthy men comparable to 12 healthy women who underwent a 2-day experiment in a 3 T MR scanner. Fear conditioning and extinction learning occurred on day 1 and extinction recall occurred on day 2. The conditioned stimuli were visual cues and the unconditioned stimulus was a mild electric shock. Skin conductance responses (SCR) were recorded throughout the experiment as an index of the conditioned response. fMRI data (blood-oxygen-level-dependent [BOLD] signal changes) were analyzed using SPM8. RESULTS: Findings showed no significant sex differences in SCR during any experimental phases. However, during fear conditioning, there were significantly greater BOLD-signal changes in the right amygdala, right rostral anterior cingulate (rACC) and dorsal anterior cingulate cortex (dACC) in women compared with men. In contrast, men showed significantly greater signal changes in bilateral rACC during extinction recall. CONCLUSIONS: These results indicate sex differences in brain activation within the fear circuitry of healthy subjects despite similar peripheral autonomic responses. Furthermore, we found that regions where sex differences were previously reported in response to stress, also exhibited sex differences during fear conditioning and extinction.
Resumo:
Background: EEG is the cornerstone of epilepsy diagnostics and mandatory to determine the underlying epilepsy syndrome (e.g. focal vs idiopathic generalized). However, its potential as imaging tool is still underrecognized. In the present study, we aim to determine the prerequisites of maximal benefit of electric source imaging (ESI) to localize the irritative zone in patients with focal epilepsy. Methods: 150 patients suffering from focal epilepsy and with minimum 1 year post-operative follow-up were studied prospectively by reviewers blinded to the underlying diagnosis and outcome. We evaluated the influence of two important factors on sensitivity and specificity of ESI: the number of electrodes (low resolution, LR-ESI: \30 vs. high resolution, HR-ESI: 128-256 electrodes), and the use of individual MRI (i-MRI) vs. template MRI (t-MRI) as head model.Results: ESI had a sensitivity of 85% and a specificity of 87% when HR-ESI with i-MRI was used. Using LR-ESI, sensitivity decreased to 68%, or even 57% when only t-MRI was available. The sensitivity of HR-ESI/i-MRI compared favorably with those of MRI (76%), PET (69%) and ictal/interictal SPECT (64%).Interpretation: This study on a large patient group shows excellent sensitivity and specificity of ESI if 128 EEG channels or more are used for ESI and if the results are co-registered to the patient's individual MRI. Localization precision is as high as or even higher than established brain imaging techniques, providing excellent costeffectiveness in epilepsy evaluation. HR-ESI appears to be a valuable additional imaging tool, given that larger electrode arrays are easily and rapidly applied with modern EEG equipment and that structural MRI is nearly always available for these patients.
Resumo:
Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.
Resumo:
To study the influence of the menstrual cycle on whole body thermal balance and on thermoregulatory mechanisms, metabolic heat production (M) was measured by indirect calorimetry and total heat losses (H) were measured by direct calorimetry in nine women during the follicular (F) and the luteal (L) phases of the menstrual cycle. The subjects were studied while exposed for 90 min to neutral environmental conditions (ambient temperature 28 degrees C, relative humidity 40%) in a direct calorimeter. The values of M and H were not modified by the phase of the menstrual cycle. Furthermore, in both phases the subjects were in thermal equilibrium because M was similar to H (69.7 +/- 1.8 and 72.1 +/- 1.8 W in F and 70.4 +/- 1.9 and 71.4 +/- 1.7 W in L phases, respectively). Tympanic temperature (Tty) was 0.24 +/- 0.07 degrees C higher in the L than in the F phase (P less than 0.05), whereas mean skin temperature (Tsk) was unchanged. Calculated skin thermal conductance (Ksk) was lower in the L (17.9 +/- 0.6 W.m-2.degrees C-1) than in the F phase (20.1 +/- 1.1 W.m-2.degrees C-1; P less than 0.05). Calculated skin blood flow (Fsk) was also lower in the L (0.101 +/- 0.008 l.min-1.m-2) than in the F phase (0.131 +/- 0.015 l.min-1.m-2; P less than 0.05). Differences in Tty, Ksk, and Fsk were not correlated with changes in plasma progesterone concentration. It is concluded that, during the L phase, a decreased thermal conductance in women exposed to a neutral environment allows the maintenance of a higher internal temperature.
Resumo:
GOJANOVIC, B., J. WELKER, K. IGLESIAS, C. DAUCOURT, and G. GREMION. Electric Bicycles as a New Active Transportation Modality to Promote Health. Med. Sci. Sports Exerc., Vol. 43, No. 11, pp. 2204-2210, 2011. Electrically assisted bicycles (EAB) are an emerging transportation modality favored for environmental reasons. Some physical effort is required to activate the supporting engine, making it a potential active commuting option. Purpose: We hypothesized that using an EAB in a hilly city allows sedentary subjects to commute comfortably, while providing a sufficient effort for health-enhancing purposes. Methods: Sedentary subjects performed four different trips at a self-selected pace: walking 1.7 km uphill from the train station to the hospital (WALK), biking 5.1 km from the lower part of town to the hospital with a regular bike (BIKE), or EAB at two different power assistance settings (EAB(high), EAB(std)). HR, oxygen consumption, and need to shower were recorded. Results: Eighteen sedentary subjects (12 female, 6 male) age 36 +/- 10 yr were included, with (V) over dotO(2max) of 39.4 +/- 5.4 mL.min(-1).kg(-1). Time to complete the course was 22 (WALK), 19 (EAB(high)), 21 (EAB(std)), and 30 (BIKE) min. Mean %(V) over dotO(2max) was 59.0%, 54.9%, 65.7%, and 72.8%. Mean%HR(max) was 71.5%, 74.5%, 80.3%, and 84.0%. There was no significant difference between WALK and EAB(high), but all other comparisons were different (P < 0.05). Two subjects needed to shower after EAB(high), 3 needed to shower after WALK, 8 needed to shower after EAB(std), and all 18 needed to shower after BIKE. WALK and EAB(high) elicited 6.5 and 6.1 METs (no difference), whereas it was 7.3 and 8.2 for EAB(std) and BIKE. Conclusions: EAB is a comfortable and ecological transportation modality, helping sedentary people commute to work and meet physical activity guidelines. Subjects appreciated ease of use and mild effort needed to activate the engine support climbing hills, without the need to shower at work. EAB can be promoted in a challenging urban environment to promote physical activity and mitigate pollution issues.
Resumo:
Medial prefrontal cortical areas have been hypothesized to underlie altered contextual processing in posttraumatic stress disorder (PTSD). We investigated brain signaling of contextual information in this disorder. Eighteen PTSD subjects and 16 healthy trauma-exposed subjects underwent a two-day fear conditioning and extinction paradigm. On day 1, within visual context A, a conditioned stimulus (CS) was followed 60% of the time by an electric shock (conditioning). The conditioned response was then extinguished (extinction learning) in context B. On day 2, recall of the extinction memory was tested in context B. Skin conductance response (SCR) and functional magnetic resonance imaging (fMRI) data were collected during context presentations. There were no SCR group differences in any context presentation. Concerning fMRI data, during late conditioning, when context A signaled danger, PTSD subjects showed dorsal anterior cingulate cortical (dACC) hyperactivation. During early extinction, when context B had not yet fully acquired signal value for safety, PTSD subjects still showed dACC hyperactivation. During late extinction, when context B had come to signal safety, they showed ventromedial prefrontal cortex (vmPFC) hypoactivation. During early extinction recall, when context B signaled safety, they showed both vmPFC hypoactivation and dACC hyperactivation. These findings suggest that PTSD subjects show alterations in the processing of contextual information related to danger and safety. This impairment is manifest even prior to a physiologically-measured, cue-elicited fear response, and characterized by hypoactivation in vmPFC and hyperactivation in dACC.